skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas, of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas, “green” hydrogen, is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage, which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However, the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).  more » « less
Award ID(s):
1633299
PAR ID:
10253320
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Energies
Volume:
14
Issue:
13
ISSN:
1996-1073
Page Range / eLocation ID:
3834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Garcia-Perez, Manuel (Ed.)
    Renewable natural gas (RNG) often generates usable energy from waste products, reduces methane emissions, and creates new revenue streams. However, not all RNG projects are financially or technically feasible. We assessed the total RNG potential of currently available local waste feedstocks in the state of Minnesota and analyzed the financial and technical limitations for project development. We found that under ideal production conditions the RNG potential from municipal solid waste, dairy and hog farm manure, and municipal wastewater solids in the state could replace approximately 7.5% of current Minnesota natural gas use. We find that technical and financial factors such as project size, financing, and distance to an existing pipeline further reduce the number of feasible RNG project sites in Minnesota. Virtual pipelines – trucking RNG short distances to pipeline injection stations – improved the modeled profitability of 124 out of 175 projects (71%) by decreasing transmission costs. No projects are financially feasible without state or federal renewable fuel credit programs because direct sale of RNG alone does not cover project costs. Dairy manure projects have the lowest levelized cost of energy, the highest total revenue, and the shortest payback period compared to municipal solid waste landfill and wastewater treatment plant projects of similar size. This difference is because manure anaerobic digestion projects are eligible for larger credits under renewable fuel credit programs than municipal solid waste landfills and wastewater treatment plants, but this credit system limits end-use of the RNG to vehicle fuel. Our contribution helps provide an outline for the magnitude of current natural gas use in Minnesota replaceable via RNG projects. 
    more » « less
  2. To meet 2050 decarbonization goals, Massachusetts will not be able to rely on carbon intensive energy sources (e.g. natural gas and gasoline) and hydrogen has been considered a replacement. To produce hydrogen without carbon emissions, renewable energy sources will be used to power electrolyzer stacks. However, renewable energy sources will also be in high demand for other energy sectors, such as automobiles and electrification. This paper estimates the amount of wind energy needed to replace natural gas with hydrogen and electrify automobiles. Comparisons are also made for a scenario in which heat pumps are used to replace natural gas. These energy sectors represent the bulk of energy consumed within Massachusetts and are of high interest to stakeholders globally. The analysis reveals the daunting amount of wind energy needed for replacement and that it is highly unlikely for hydrogen to replace natural gas in time to meet the state’s climate goals. 
    more » « less
  3. Synthetic ammonia production by the Haber–Bosch process revolutionized agriculture by making relatively inexpensive nitrogen (N) fertilizer widely available and enabling a rise in global food production1,2. The Haber–Bosch process relies on fossil fuels (known as grey ammonia production) and emits more than 450 Mt of CO2 annually3. Green ammonia, which is produced using renewable energy, offers a pathway to decouple ammonia production from fossil fuels and reduce CO2 emissions. As a carbon-free fuel, green ammonia could partially replace fossil fuels to decarbonize hard-to-abate sectors such as maritime shipping4. However, the widespread use of green ammonia could have complex environmental and social consequences, as it threatens to add reactive N into the biosphere3 and could disrupt fertilizer markets. In this Comment, we identify opportunities, barriers and open questions related to green ammonia production and usage as a fertilizer and beyond. We then recommend research priorities to avoid unforeseen consequences through research, monitoring and adaptation in real time. 
    more » « less
  4. A vehicular adsorbed natural gas (ANG) tank system operates as a mobile, dual gas storage/separation system to enable off-the-natural-gas-grid producers of biogas to use, ship, and process biogas for: (a) onboard delivery to engine of on-demand delivery of methane-rich fuel to an internal-combustion engine; (b) onboard separation of methane from carbon dioxide and extraction of unused fuel as carbon-dioxide-rich commodity, and (c) and large-scale, tractor-trailer shipping of biogas to a biogas upgrading plant and separation of methane from carbon dioxide during discharge at the plant. A mobile tank system on a vehicle comprises vessels filled with porous adsorbent and pressure valves; pressure regulators; pressure/temperature transducers at inlet, outlet, intermediate ports; and an onboard compressor/gas extraction pump. The tank discharging procedure for the separation of biogas into methane and carbon dioxide is such that the concentration of methane in discharged gas is at least 10% greater than in biogas. 
    more » « less
  5. Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O 2 is ironically not of high value. In fact, the co-production of H 2 and O 2 in conventional water electrolysis may result in the formation of explosive H 2 /O 2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H 2 evolution from water and avoid the generation of H 2 /O 2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H 2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H 2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H 2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed. 
    more » « less