skip to main content


Title: Modelling the habitat preference of two key <i>Sphagnum</i> species in a poor fen as controlled by capitulum water content
Abstract. Current peatland models generally treat vegetation as static, although plant community structure is known to alter as a response to environmental change. Because the vegetation structure and ecosystem functioning are tightly linked, realistic projections of peatland response to climate change require the inclusion of vegetation dynamics in ecosystem models. In peatlands, Sphagnum mosses are key engineers. Moss community composition primarily follows habitat moisture conditions. The known species habitat preference along the prevailing moisture gradient might not directly serve as a reliable predictor for future species compositions, as water table fluctuation is likely to increase. Hence, modelling the mechanisms that control the habitat preference of Sphagna is a good first step for modelling community dynamics in peatlands. In this study, we developed the Peatland Moss Simulator (PMS), which simulates the community dynamics of the peatland moss layer. PMS is a process-based model that employs a stochastic, individual-based approach for simulating competition within the peatland moss layer based on species differences in functional traits. At the shoot-level, growth and competition were driven by net photosynthesis, which was regulated by hydrological processes via the capitulum water content. The model was tested by predicting the habitat preferences of Sphagnum magellanicum and Sphagnum fallax – two key species representing dry (hummock) and wet (lawn) habitats in a poor fen peatland (Lakkasuo, Finland). PMS successfully captured the habitat preferences of the two Sphagnum species based on observed variations in trait properties. Our model simulation further showed that the validity of PMS depended on the interspecific differences in the capitulum water content being correctly specified. Neglecting the water content differences led to the failure of PMS to predict the habitat preferences of the species in stochastic simulations. Our work highlights the importance of the capitulum water content with respect to the dynamics and carbon functioning of Sphagnum communities in peatland ecosystems. Thus, studies of peatland responses to changing environmental conditions need to include capitulum water processes as a control on moss community dynamics. Our PMS model could be used as an elemental design for the future development of dynamic vegetation models for peatland ecosystems.  more » « less
Award ID(s):
1802825
NSF-PAR ID:
10253348
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
17
Issue:
22
ISSN:
1726-4189
Page Range / eLocation ID:
5693 to 5719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 &lt; 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value. 
    more » « less
  2. Abstract

    Northern peatlands play an important role in the global C cycle due to their large C stocks and high potential methane (CH4) emissions. The CH4and CO2cycles of these systems are closely linked to hydrology, with water table level regulating the balance of oxic and anoxic conditions and the water content ofSphagnummosses that dominate primary production. Previous work has demonstrated that hyperspectral indices well‐suited to the detection of altered hydrology inSphagnumpeatlands are also highly correlated with GPP. However, little work has been done to extend these findings to CH4effluxes. In this study, we evaluate the utility of four hyperspectral indices, two reflecting vegetation photosynthetic function (chlorophyll index (CI); normalized difference vegetation index) and two reflecting water content (wetness index (WI); floating water band index), for detecting effects of altered water table, precipitation, and vegetation community on CH4and CO2exchange in two peatland mesocosm studies. We found that CI is a good predictor of net CO2exchange, and that it captured both drought and vegetation effects consistently across a broad range of vegetation treatments. Further, we demonstrate for the first time that WI combined with CI explained a significant percentage of CH4efflux (R2 = 0.32–0.57). Our results indicate that CI and WI together may be effective tools for detecting effects of altered hydrology and vegetation on northernSphagnum‐peatland CH4and CO2emissions, with implications for detecting and modeling changes in emissions of greenhouse gases at scales ranging from the ecosystem to the Earth system.

     
    more » « less
  3. Abstract

    The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum—the main peat‐former and ecosystem engineer in northern peatlands—remains unclear.

    We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth.

    Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density.

    Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species‐specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.

     
    more » « less
  4. Abstract

    Bamboo‐dominated forests (BDF) extend over large areas in the drought‐prone Southwestern Amazon, yet little is known about the dynamics of these ecosystems. Here, we investigate the hypothesis that bamboo modulates large‐scale ecosystem dynamics through competition with coexisting trees for water.

    We examined spatio‐temporal patterns of remotely sensed metrics (Enhanced Vegetation Index [EVI], Normalized Difference Moisture Index [NDMI]) in >300 Landsat images as proxies for canopy leaf phenology and water content at two time scales: (1) a complete bamboo life cycle (~28 years), and (2) the seasonal cycle; and at two spatial scales: (a) comparing adjacent areas of BDF vs.Terra‐firmeforests (TFF) to investigate regional dynamics, and (b) comparing the vegetation classes of bamboo, trees in BDF, and trees in TFF to investigate the effects of bamboo on coexisting trees.

    At the regional scale, BDF showed higher EVI (leaf area density) and lower NDMI (water content) than nearby TFF but these differences disappeared as bamboo died, suggesting a strong influence of bamboo life stage in the functioning of these forests. BDF seasonal cycle showed a bimodal EVI pattern as trees and bamboos had asynchronized leaf production peaks.

    At the scale of vegetation classes, trees in BDF showed lower NDMI (i.e. water content) than trees in TFF except after bamboo mortality, indicating a release from competition with bamboo for water. Canopy water content of trees in BDF was also reduced during bamboo dry‐season greening (increased EVI ~ leaf production) due to increased water demands. Nevertheless, long‐term and seasonal phenology of trees in BDF did not differ from that of trees in TFF suggesting a potential selection for drought‐tolerant trees in BDF.

    Synthesis. Bamboo‐dominated forests have received less attention than other Amazonian forests and their functional dynamics are commonly ignored or misinterpreted. Using remote sensing to characterize forest phenology and water content, we show the distinctive seasonal and long‐term dynamics of BDF and coexisting trees and the importance of bamboo competition for water in shaping this ecosystem. Our results suggest a potential selection for drought‐tolerant trees in BDF since they maintain the same EVI as trees in bamboo‐free forests but with lower water content. A better characterization of BDF and their cyclical dynamics is crucial for accurately interpreting Amazonian forests' responses to extreme climatic events such as high temperatures and droughts.

     
    more » « less
  5. Martiny, Jennifer B. (Ed.)
    ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands. 
    more » « less