skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1802810

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As Arctic regions warm rapidly, it is unclear whether high‐latitude soil carbon (C) will decrease or increase. Predicting future dynamics of Arctic soil C stocks requires a better understanding of the quantities and controls of soil C. We explore the relationship between vegetation and surface soil C in an understudied region of the Arctic: Baffin Island, Nunavut, Canada. We combined soil C data for three vegetation types—polar desert, mesic tundra, and wet meadow—with a vegetation classification to upscale soil C stocks. Surface soil C differed significantly across vegetation types, and interactions existed between vegetation type and soil depth. Polar desert soils were consistently mineral, with relatively thin organic layers, low percent C, and high bulk density. Mesic soils exhibited an organic‐rich epipedon overlying mineral soil. Wet meadows were consistently organic soil with low bulk density and high percent C. For the top 20 cm, polar desert contained the least soil C (2.17 ± 0.48 kg m−2); mesic tundra had intermediate C (8.92 ± 0.74 kg m−2); wet meadow stored the most C (13.07 ± 0.69 kg m−2). Extrapolating to the top 30 cm, our results suggest that approximately 44 Tg C is stored in the study region with a mean landscape soil C stock of 2.75 kg m−2for non‐water areas. Combining vegetation mapping with local soil C stocks considerably narrows the range of estimates from other upscaling approaches (27–189 Tg) for soil C on South Baffin Island. 
    more » « less
  2. Abstract Northern peatlands have been a carbon sink since their initiation. This has been simulated by existing process‐based models. However, most of these models are limited by lacking sufficient processes of the N cycle in peatlands. Here, we use a peatland biogeochemistry model incorporated with N‐related processes of fixation, deposition, gas emission, loss through water flow, net mineralization, plant uptake and litterfall to project the role of the peatlands in future radiative forcing (RF). Simulations from 15‐ka BP to 2100 are conducted driven by CMIP5 climate forcing data of IPSL‐CM5A‐LR and bcc‐csm1‐1, including warming scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. During the Holocene, northern peatlands have an increasing cooling effect with RF up to −0.57 W m−2. By 1990, these peatlands accumulate 408 Pg C and 7.8 Pg N. Under warming, increasing mineral N content enhances plant net primary productivity; the cooling effect persists. However, RF increases by 0.1–0.5 W m−2during the 21st century, mainly due to the stimulated CH4emissions. Northern peatlands could switch from a C sink to a source when the annual temperature exceeds −2.2 to −0.5°C. This study highlights that the improved N cycle causes higher CO2‐C sink capacity in northern peatlands. However, it also causes a significant increase in CH4emissions, which weakens the cooling effect of northern peatlands in future climate. 
    more » « less
  3. Abstract Permafrost dynamics can drastically affect vegetation and soil carbon dynamics in northern high latitudes. Vegetation has significant influences on the energy balance of soil surface by impacting the short-wave radiation, long-wave radiation and surface sensible heat flux, affecting soil thermal dynamics, in turn, inducing vegetation shift, affecting carbon cycling. During winter, snow can also significantly impact soil temperature due to its insulative effect. However, these processes have not been fully modeled to date. To quantify the interactions between vegetation, snow, and soil thermal dynamics and their impacts on carbon dynamics over the circumpolar region (45–90° N), we revise a sophisticated ecosystem model to improve simulations of soil temperature profile and their influences on vegetation, ecosystem carbon pools and fluxes. We find that, with warmer soil temperature in winter and cooler soil temperature in summer simulated with the revised model considering vegetation shift and snow effects, the region will release 1.54 Pg C/year to the atmosphere for present-day and 66.77–87.95 Pg C in 2022–2100. The canopy effects due to vegetation shift, however, will get more carbon sequestered into the ecosystem at 1.00 Pg C/year for present day and 36.09–44.32 Pg C/year in 2022–2100. This study highlights the importance to consider the interactions between snow, vegetation shift and soil thermal dynamics in simulating carbon dynamics in the region. 
    more » « less
  4. Abstract. Northern peatlands have been a large C sink during the Holocene,but whether they will keep being a C sink under future climate change isuncertain. This study simulates the responses of northern peatlands tofuture climate until 2300 with a Peatland version Terrestrial EcosystemModel (PTEM). The simulations are driven with two sets of CMIP5 climate data(IPSL-CM5A-LR and bcc-csm1-1) under three warming scenarios (RCPs 2.6, 4.5 and8.5). Peatland area expansion, shrinkage, and C accumulation anddecomposition are modeled. In the 21st century, northern peatlands areprojected to be a C source of 1.2–13.3 Pg C under all climate scenariosexcept for RCP 2.6 of bcc-csm1-1 (a sink of 0.8 Pg C). During 2100–2300,northern peatlands under all scenarios are a C source under IPSL-CM5A-LRscenarios, being larger sources than bcc-csm1-1 scenarios (5.9–118.3 vs.0.7–87.6 Pg C). C sources are attributed to (1) the peatland water table depth(WTD) becoming deeper and permafrost thaw increasing decomposition rate; (2) net primary production (NPP) not increasing much as climate warms becausepeat drying suppresses net N mineralization; and (3) as WTD deepens,peatlands switching from moss–herbaceous dominated to moss–woody dominated,while woody plants require more N for productivity. Under IPSL-CM5A-LRscenarios, northern peatlands remain as a C sink until the pan-Arctic annualtemperature reaches −2.6 to −2.89 ∘C, while this threshold is −2.09to −2.35 ∘C under bcc-csm1-1 scenarios. This study predicts anorthern peatland sink-to-source shift in around 2050, earlier than previousestimates of after 2100, and emphasizes the vulnerability of northernpeatlands to climate change. 
    more » « less
  5. Abstract. Wetlands and freshwater bodies (mainly lakes) are the largestnatural sources of the greenhouse gas CH4 to the atmosphere. Great effortshave been made to quantify these source emissions and their uncertainties.Previous research suggests that there might be significant uncertaintiescoming from “double accounting” emissions from freshwater bodies andwetlands. Here we quantify the methane emissions from both land andfreshwater bodies in the pan-Arctic with two process-based biogeochemistrymodels by minimizing the double accounting at the landscape scale. Twonon-overlapping dynamic areal change datasets are used to drive the models.We estimate that the total methane emissions from the pan-Arctic are 36.46 ± 1.02 Tg CH4 yr−1 during 2000–2015, of which wetlands andfreshwater bodies are 21.69 ± 0.59 Tg CH4 yr−1 and 14.76 ± 0.44 Tg CH4 yr−1, respectively. Our estimation narrows thedifference between previous bottom-up (53.9 Tg CH4 yr−1) andtop-down (29 Tg CH4 yr−1) estimates. Our correlation analysisshows that air temperature is the most important driver for methane emissionsof inland water systems. Wetland emissions are also significantly affected byvapor pressure, while lake emissions are more influenced by precipitation andlandscape areal changes. Sensitivity tests indicate that pan-Arctic lakeCH4 emissions were highly influenced by air temperature but less bylake sediment carbon increase. 
    more » « less
  6. Abstract Atmospheric concentrations of methane, a powerful greenhouse gas, have strongly increased since 2007. Measurements of stable carbon isotopes of methane can constrain emissions if the isotopic compositions are known; however, isotopic compositions of methane emissions from wetlands are poorly constrained despite their importance. Here, we use a process-based biogeochemistry model to calculate the stable carbon isotopic composition of global wetland methane emissions. We estimate a mean global signature of −61.3 ± 0.7‰ and find that tropical wetland emissions are enriched by ~11‰ relative to boreal wetlands. Our model shows improved resolution of regional, latitudinal and global variations in isotopic composition of wetland emissions. Atmospheric simulation scenarios with the improved wetland isotopic composition suggest that increases in atmospheric methane since 2007 are attributable to rising microbial emissions. Our findings substantially reduce uncertainty in the stable carbon isotopic composition of methane emissions from wetlands and improve understanding of the global methane budget. 
    more » « less
  7. Soil carbon (C) in permafrost peatlands is vulnerable to decomposition with thaw under a warming climate. The amount and form of C loss likely depends on the site hydrology following permafrost thaw, but antecedent conditions during peat accumulation are also likely important. We test the role of differing hydrologic conditions on rates of peat accumulation, permafrost formation, and response to warming at an Arctic tundra fen using a process-based model of peatland dynamics in wet and dry landscape settings that persist from peat initiation in the mid-Holocene through future simulations to 2100 CE and 2300 CE. Climate conditions for both the wet and dry landscape settings are driven by the same downscaled TraCE-21ka transient paleoclimate simulations and CCSM4 RCP8.5 climate drivers. The landscape setting controlled the rates of peat accumulation, permafrost formation and the response to climatic warming and permafrost thaw. The dry landscape scenario had high rates of initial peat accumulation (11.7 ± 3.4 mm decade −1 ) and rapid permafrost aggradation but similar total C stocks as the wet landscape scenario. The wet landscape scenario was more resilient to 21st century warming temperatures than the dry landscape scenario and showed 60% smaller C losses and 70% more new net peat C additions by 2100 CE. Differences in the modeled responses indicate the largest effect is related to the landscape setting and basin hydrology due to permafrost controls on decomposition, suggesting an important sensitivity to changing runoff patterns. These subtle hydrological effects will be difficult to capture at circumpolar scales but are important for the carbon balance of permafrost peatlands under future climate warming. 
    more » « less