skip to main content

Title: A Research Road Map for Responsible Use of Agricultural Nitrogen
Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify research opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use more » of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1932661 1832042
Publication Date:
NSF-PAR ID:
10253355
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
5
ISSN:
2571-581X
Sponsoring Org:
National Science Foundation
More Like this
  1. Legumes are the second most important family of crop plants. One defining feature of legumes is their unique ability to establish a nitrogen-fixing root nodule symbiosis with soil bacteria known as rhizobia. Since domestication from their wild relatives, crop legumes have been under intensive breeding to improve yield and other agronomic traits but with little attention paid to the belowground symbiosis traits. Theoretical models predict that domestication and breeding processes, coupled with high‐input agricultural practices, might have reduced the capacity of crop legumes to achieve their full potential of nitrogen fixation symbiosis. Testing this prediction requires characterizing symbiosis traits inmore »wild and breeding populations under both natural and cultivated environments using genetic, genomic, and ecological approaches. However, very few experimental studies have been dedicated to this area of research. Here, we review how legumes regulate their interactions with soil rhizobia and how domestication, breeding and agricultural practices might have affected nodulation capacity, nitrogen fixation efficiency, and the composition and function of rhizobial community. We also provide a perspective on how to improve legume-rhizobial symbiosis in sustainable agricultural systems.« less
  2. To be able to compare many agricultural models, a general framework for model comparison when field data may limit direct comparison of models is proposed, developed, and also demonstrated. The framework first calibrates the benchmark model against the field data, and next it calibrates the test model against the data generated by the calibrated benchmark model. The framework is validated for the modeling of the soil nutrient nitrogen (N), a critical component in the overall agriculture system modeling effort. The nitrogen dynamics and related carbon (C) dynamics, as captured in advanced agricultural modeling such as RZWQM, are highly complex, involvingmore »numerous states (pools) and parameters. Calibrating many parameters requires more time and data to avoid underfitting. The execution time of a complex model is higher as well. A study of tradeoff among modeling complexities vs. speed-up, and the corresponding impact on modeling accuracy, is desirable. This paper surveys soil nitrogen models and lists those by their complexity in terms of the number of parameters, and C-N pools. This paper also examines a lean soil N and C dynamics model and compares it with an advanced model, RZWQM. Since nitrate and ammonia are not directly measured in this study, we first calibrate RZWQM using the available data from an experimental field in Greeley, CO, and next use the daily nitrate and ammonia data generated from RZWQM as ground truth, against which the lean model’s N dynamics parameters are calibrated. In both cases, the crop growth was removed to zero out the plant uptake, to compare only the soil N-dynamics. The comparison results showed good accuracy with a coefficient of determination (R2) match of 0.99 and 0.62 for nitrate and ammonia, respectively, while affording significant speed-up in simulation time. The lean model is also hosted in MyGeoHub cyberinfrastructure for universal online access.« less
  3. Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as wellmore »as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur, agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups.« less
  4. Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at leastmore »once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water quality issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality.« less
  5. Abstract Nitrogen loss from cultivated soils threatens the economic and environmental sustainability of agriculture. Nitrate (NO 3 − ) derived from nitrification of nitrogen fertilizer and ammonified soil organic nitrogen may be lost from soils via denitrification, producing dinitrogen gas (N 2 ) or the greenhouse gas nitrous oxide (N 2 O). Nitrate that accumulates in soils is also subject to leaching loss, which can degrade water quality and make NO 3 − available for downstream denitrification. Here we use patterns in the isotopic composition of NO 3 − observed from 2012 to 2017 to characterize N loss to denitrificationmore »within soils, groundwater, and stream riparian corridors of a non-irrigated agroecosystem in the northern Great Plains (Judith River Watershed, Montana, USA). We find evidence for denitrification across these domains, expressed as a positive linear relationship between δ 15 N and δ 18 O values of NO 3 − , as well as increasing δ 15 N values with decreasing NO 3 − concentration. In soils, isotopic evidence of denitrification was present during fallow periods (no crop growing), despite net accumulation of NO 3 − from the nitrification of ammonified soil organic nitrogen. We combine previous results for soil NO 3 − mass balance with δ 15 N mass balance to estimate denitrification rates in soil relative to groundwater and streams. Substantial denitrification from soils during fallow periods may be masked by nitrification of ammonified soil organic nitrogen, representing a hidden loss of soil organic nitrogen and an under-quantified flux of N to the atmosphere. Globally, cultivated land spends ca. 50% of time in a fallow condition; denitrification in fallow soils may be an overlooked but globally significant source of agricultural N 2 O emissions, which must be reduced along-side other emissions to meet Paris Agreement goals for slowing global temperature increase.« less