- PAR ID:
- 10253387
- Date Published:
- Journal Name:
- Financial Cryptography and Data Security
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Secret sharing is an essential tool for many distributed applications, including distributed key generation and multiparty computation. For many practical applications, we would like to tolerate network churn, meaning participants can dynamically enter and leave the pool of protocol participants as they please. Such protocols, called Dynamic-committee Proactive Secret Sharing (DPSS) have recently been studied; however, existing DPSS protocols do not gracefully handle faults: the presence of even one unexpectedly slow node can often slow down the whole protocol by a factor of O(n). In this work, we explore optimally fault-tolerant asynchronous DPSS that is not slowed down by crash faults and even handles byzantine faults while maintaining the same performance. We first introduce the first high-threshold DPSS, which offers favorable characteristics relative to prior non-synchronous works in the presence of faults while simultaneously supporting higher privacy thresholds. We then batch-amortize this scheme along with a parallel non-high-threshold scheme which achieves optimal bandwidth characteristics. We implement our schemes and demonstrate that they can compete with prior work in best-case performance while outperforming it in non-optimal settings.more » « less
-
Asynchronous complete secret sharing (ACSS) is a foundational primitive in the design of distributed algorithms and cryptosystems that require confidentiality. ACSS permits a dealer to distribute a secret to a collection of N servers so that everyone holds shares of a polynomial containing the dealer's secret.
This work contributes a new ACSS protocol, called Haven++, that uses packing and batching to make asymptotic and concrete advances in the design and application of ACSS for large secrets. Haven++ allows the dealer to pack multiple secrets in a single sharing phase, and to reconstruct either one or all of them later. For even larger secrets, we contribute a batching technique to amortize the cost of proof generation and verification across multiple invocations of our protocol.
The result is an asymptotic improvement in the worst-case amortized communication and computation complexity, both for ACSS itself and for its application to asynchronous distributed key generation. Our ADKG based on Haven++ achieves, for the first time, an optimal worst case amortized communication complexity of κN without a trusted setup. To show the practicality of Haven++, we implement it and find that it outperforms the work of Yurek et al. (NDSS 2022) by more than an order of magnitude when there are malicious, faulty parties.
-
A fundamental question that has been studied in cryptography and in information theory is whether two parties can communicate confidentially using exclusively an open channel. We consider the model in which the two parties hold inputs that are correlated in a certain sense. This model has been studied extensively in information theory, and communication protocols have been designed which exploit the correlation to extract from the inputs a shared secret key. However, all the existing protocols are not universal in the sense that they require that the two parties also know some attributes of the correlation. In other words, they require that each party knows something about the other party’s input. We present a protocol that does not require any prior additional information. It uses space-bounded Kolmogorov complexity to measure correlation and it allows the two legal parties to obtain a common key that looks random to an eavesdropper that observes the communication and is restricted to use a bounded amount of space for the attack. Thus the protocol achieves complexity-theoretical security, but it does not use any unproven result from computational complexity. On the negative side, the protocol is not efficient in the sense that the computation of the two legal parties uses more space than the space allowed to the adversary.more » « less
-
This paper studies Byzantine reliable broadcast (BRB) under asynchronous networks, and improves the state-of-the-art protocols from the following aspects. Near-optimal communication cost: We propose two new BRB protocols for n nodes and input message M that has communication cost O(n|M| +n^2 log n), which is near-optimal due to the lower bound of Ω(n|M| +n^2). The first BRB protocol assumes threshold signature but is easy to understand, while the second BRB protocol is error-free but less intuitive. Improved computation: We propose a new construction that improves the computation cost of the state-of-the-art BRB by avoiding the expensive online error correction on the input message, while achieving the same communication cost. Balanced communication: We propose a technique named balanced multicast that can balance the communication cost for BRB protocols where the broadcaster needs to multicast the message M while other nodes only needs to multicast coded fragments of size O(|M|/n + log n). The balanced multicast technique can be applied to many existing BRB protocols as well as all our new constructions in this paper, and can make every node incur about the same communication cost. Finally, we present a lower bound to show the near optimality of our protocol in terms of communication cost at each node.more » « less
-
Canteaut, Anne ; Standaert, Francois-Xavier (Ed.)Secure multi-party computation (MPC) allows multiple par-ties to perform secure joint computations on their private inputs. To-day, applications for MPC are growing with thousands of parties wish-ing to build federated machine learning models or trusted setups for blockchains. To address such scenarios we propose a suite of novel MPC protocols that maximize throughput when run with large numbers of parties. In particular, our protocols have both communication and computation complexity that decrease with the number of parties. Our protocols build on prior protocols based on packed secret-sharing, introducing new techniques to build more efficient computation for general circuits. Specifically, we introduce a new approach for handling linear attacks that arise in protocols using packed secret-sharing and we propose a method for unpacking shared multiplication triples without increasingthe asymptotic costs. Compared with prior work, we avoid the log|C|overhead required when generically compiling circuits of size |C| for use in a SIMD computation, and we improve over folklore “committee-based” solutions by a factor of O(s), the statistical security parameter. In practice, our protocol is up to 10X faster than any known construction, under a reasonable set of parameters.more » « less