The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $$Ra\to \infty$$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $$Nu \sim Ra^{1/3}$$ or ‘ultimate’ $$Nu \sim Ra^{1/2}$$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $$10^{14}$$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $$Ra\to \infty$$ , it cannot achieve the ultimate scaling.
more »
« less
Lagrangian Statistics of Heat Transfer in Homogeneous Turbulence Driven by Boussinesq Convection
The movement of heat in a convecting system is typically described by the nondimensional Nusselt number, which involves an average over both space and time. In direct numerical simulations of turbulent flows, there is considerable variation in the contributions to the Nusselt number, both because of local spatial variations due to plumes and because of intermittency in time. We develop a statistical approach to more completely describe the structure of heat transfer, using an exit-distance extracted from Lagrangian tracer particles, which we call the Lagrangian heat structure. In a comparison between simulations of homogeneous turbulence driven by Boussinesq convection, the Lagrangian heat structure reveals significant non-Gaussian character, as well as a clear trend with Prandtl number and Rayleigh number. This has encouraging implications for simulations performed with the goal of understanding turbulent convection in natural settings such as Earth’s atmosphere and oceans, as well as planetary and stellar dynamos.
more »
« less
- Award ID(s):
- 1907876
- PAR ID:
- 10253392
- Date Published:
- Journal Name:
- Fluids
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2311-5521
- Page Range / eLocation ID:
- 127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study presents direct numerical simulations of turbulent Rayleigh–Bénard convection in non-colloidal suspensions, with special focus on the heat transfer modifications in the flow. Adopting a Rayleigh number of $10^8$ and Prandtl number of 7, parametric investigations of the particle volume fraction $$0\leq \varPhi \leq 40\,\%$$ and particle diameter $$1/20\leq d^*_p\leq 1/10$$ with respect to the cavity height, are carried out. The particles are neutrally buoyant, rigid spheres with physical properties that match the fluid phase. Up to $$\varPhi =25\,\%$$ , the Nusselt number increases weakly but steadily, mainly due to the increased thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond $$\varPhi =30\,\%$$ , the Nusselt number exhibits a substantial drop, down to approximately 1/3 of the single-phase value. This decrease is attributed to the dense particle layering in the near-wall region, confirmed by the time-averaged local volume fraction. The dense particle layer reduces the convection in the near-wall region and negates the formation of any coherent structures within one particle diameter from the wall. Significant differences between $$\varPhi \leq 30\,\%$$ and 40 % are observed in all statistical quantities, including heat transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention is also given to the role of particle rotation, which is shown to contribute to maintaining high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle size promotes the particle layering next to the wall, inducing a similar heat transfer reduction as in the highest particle volume fraction case.more » « less
-
null (Ed.)The influence of microscale flow structures (smaller than the pore size) on turbulent heat transfer in porous media has not been yet investigated. The goal of this study is to determine the influence of the micro-vortices on convection heat transfer in turbulent porous media flow. Turbulent flow in a homogeneous porous medium was investigated using Large Eddy Simulation (LES) at a Reynolds number of 300. We observed that the convection heat transfer characteristics are dependent on whether the micro-vortices are attached or detached from the surface of the obstacle. There is a spectral correlation between the Nusselt number and the pressure instabilities due to vortex shedding. A secondary flow instability occurs due to high pressure regions forming periodically near the converging pathway between obstacles. This causes local adverse pressure gradient, affecting the flow velocity and convection heat transfer. This study has been performed for obstacles with shapes of square and circular cylinders at porosities of 0.50 and 0.87. Understanding the dominant modes that affect convection heat transfer can aid in finding an optimum geometry for the porous medium.more » « less
-
null (Ed.)In this study, we investigate and develop scaling laws as a function of external non-dimensional control parameters for heat and momentum transport for non-rotating, slowly rotating and rapidly rotating turbulent convection systems, with the end goal of forging connections and bridging the various gaps between these regimes. Two perspectives are considered, one where turbulent convection is viewed from the standpoint of an applied temperature drop across the domain and the other with a viewpoint in terms of an applied heat flux. While a straightforward transformation exist between the two perspectives indicating equivalence, it is found the former provides a clear set of connections that bridge between the three regimes. Our generic convection scalings, based upon an Inertial-Archimedean balance, produce the classic diffusion-free scalings for the non-rotating limit (NRL) and the slowly rotating limit (SRL). This is characterized by a free-falling fluid parcel on the global scale possessing a thermal anomaly on par with the temperature drop across the domain. In the rapidly rotating limit (RRL), the generic convection scalings are based on a Coriolis-Inertial-Archimedean (CIA) balance, along with a local fluctuating-mean advective temperature balance. This produces a scenario in which anisotropic fluid parcels attain a thermal wind velocity and where the thermal anomalies are greatly attenuated compared to the total temperature drop. We find that turbulent scalings may be deduced simply by consideration of the generic non-dimensional transport parameters --- local Reynolds $$Re_\ell = U \ell /\nu$$; local P\'eclet $$Pe_\ell = U \ell /\kappa$$; and Nusselt number $$Nu = U \vartheta/(\kappa \Delta T/H)$$ --- through the selection of physically relevant estimates for length $$\ell$$, velocity $$U$$ and temperature scales $$\vartheta$$ in each regime. Emergent from the scaling analyses is a unified continuum based on a single external control parameter, the convective Rossby number\JMA{,} $$\RoC = \sqrt{g \alpha \Delta T / 4 \Omega^2 H}$$, that strikingly appears in each regime by consideration of the local, convection-scale Rossby number $$\Rol=U/(2\Omega \ell)$$. Thus we show that $$\RoC$$ scales with the local Rossby number $$\Rol$$ in both the slowly rotating and the rapidly rotating regimes, explaining the ubiquity of $$\RoC$$ in rotating convection studies. We show in non-, slowly, and rapidly rotating systems that the convective heat transport, parameterized via $$Pe_\ell$$, scales with the total heat transport parameterized via the Nusselt number $Nu$. Within the rapidly-rotating limit, momentum transport arguments generate a scaling for the system-scale Rossby number, $$Ro_H$$, that, recast in terms of the total heat flux through the system, is shown to be synonymous with the classical flux-based `CIA' scaling, $$Ro_{CIA}$$. These, in turn, are then shown to asymptote to $$Ro_H \sim Ro_{CIA} \sim \RoC^2$$, demonstrating that these momentum transport scalings are identical in the limit of rapidly rotating turbulent heat transfer.more » « less
-
A numerical investigation of an asymptotically reduced model for quasigeostrophic Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numerically suppressed by modifying the governing equations. At the largest accessible values of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E2, respectively, where E is the Ekman number and Pr is the Prandtl number. For large Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and momentum transport scalings that exceed those of the diffusion-free scaling laws. The Taylor microscale does not vary significantly with increasing Ra, whereas the integral length scale grows weakly. The computed length scales remain O(1) with respect to the linearly unstable critical wave number; we therefore conclude that these scales remain viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA) force balance in the turbulent regime; interior dynamics are instead dominated by horizontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A secondary, subdominant balance between the Archimedean buoyancy force and the viscous force occurs in the interior and the ratio of the root mean square (rms) of these two forces is found to approach unity with increasing Ra. This secondary balance is attributed to the turbulent fluid interior acting as the dominant control on the heat transport. These findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations are characterized by what may be termed a nonlocal CIA balance in which the buoyancy force is dominant within the thermal boundary layers and is spatially separated from the interior Coriolis and inertial forces.more » « less