skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Steady Rayleigh–Bénard convection between no-slip boundaries
The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $$Ra\to \infty$$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $$Nu \sim Ra^{1/3}$$ or ‘ultimate’ $$Nu \sim Ra^{1/2}$$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $$10^{14}$$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $$Ra\to \infty$$ , it cannot achieve the ultimate scaling.  more » « less
Award ID(s):
1813003
PAR ID:
10373963
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
933
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal boundaries is studied via numerical computations. We explore properties of steady convective rolls with aspect ratios $${\rm \pi} /5\leqslant \varGamma \leqslant 4{\rm \pi}$$ , where $$\varGamma$$ is the width-to-height ratio for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number, $$10^3\leqslant Ra\leqslant 10^{11}$$ , and four orders of magnitude in the Prandtl number, $$10^{-2}\leqslant Pr\leqslant 10^2$$ . At large $Ra$ where steady rolls are dynamically unstable, the computed rolls display $$Ra \rightarrow \infty$$ asymptotic scaling. In this regime, the Nusselt number $Nu$ that measures heat transport scales as $$Ra^{1/3}$$ uniformly in $Pr$ . The prefactor of this scaling depends on $$\varGamma$$ and is largest at $$\varGamma \approx 1.9$$ . The Reynolds number $Re$ for large- $Ra$ rolls scales as $$Pr^{-1} Ra^{2/3}$$ with a prefactor that is largest at $$\varGamma \approx 4.5$$ . All of these large- $Ra$ features agree quantitatively with the semi-analytical asymptotic solutions constructed by Chini & Cox ( Phys. Fluids , vol. 21, 2009, 083603). Convergence of $Nu$ and $Re$ to their asymptotic scalings occurs more slowly when $Pr$ is larger and when $$\varGamma$$ is smaller. 
    more » « less
  2. null (Ed.)
    We use well resolved numerical simulations with the lattice Boltzmann method to study Rayleigh–Bénard convection in cells with a fractal boundary in two dimensions for $Pr = 1$ and $$Ra \in \left [10^7, 10^{10}\right ]$$ , where Pr and Ra are the Prandtl and Rayleigh numbers. The fractal boundaries are functions characterized by power spectral densities $S(k)$ that decay with wavenumber, $$k$$ , as $$S(k) \sim k^{p}$$ ( $p < 0$ ). The degree of roughness is quantified by the exponent $$p$$ with $p < -3$ for smooth (differentiable) surfaces and $$-3 \le p < -1$$ for rough surfaces with Hausdorff dimension $$D_f=\frac {1}{2}(p+5)$$ . By computing the exponent $$\beta$$ using power law fits of $$Nu \sim Ra^{\beta }$$ , where $Nu$ is the Nusselt number, we find that the heat transport scaling increases with roughness through the top two decades of $$Ra \in \left [10^8, 10^{10}\right ]$$ . For $$p$$ $= -3.0$ , $-2.0$ and $-1.5$ we find $$\beta = 0.288 \pm 0.005, 0.329 \pm 0.006$$ and $$0.352 \pm 0.011$$ , respectively. We also find that the Reynolds number, $Re$ , scales as $$Re \sim Ra^{\xi }$$ , where $$\xi \approx 0.57$$ over $$Ra \in \left [10^7, 10^{10}\right ]$$ , for all $$p$$ used in the study. For a given value of $$p$$ , the averaged $Nu$ and $Re$ are insensitive to the specific realization of the roughness. 
    more » « less
  3. A numerical investigation of an asymptotically reduced model for quasigeostrophic Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numerically suppressed by modifying the governing equations. At the largest accessible values of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E2, respectively, where E is the Ekman number and Pr is the Prandtl number. For large Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and momentum transport scalings that exceed those of the diffusion-free scaling laws. The Taylor microscale does not vary significantly with increasing Ra, whereas the integral length scale grows weakly. The computed length scales remain O(1) with respect to the linearly unstable critical wave number; we therefore conclude that these scales remain viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA) force balance in the turbulent regime; interior dynamics are instead dominated by horizontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A secondary, subdominant balance between the Archimedean buoyancy force and the viscous force occurs in the interior and the ratio of the root mean square (rms) of these two forces is found to approach unity with increasing Ra. This secondary balance is attributed to the turbulent fluid interior acting as the dominant control on the heat transport. These findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations are characterized by what may be termed a nonlocal CIA balance in which the buoyancy force is dominant within the thermal boundary layers and is spatially separated from the interior Coriolis and inertial forces. 
    more » « less
  4. null (Ed.)
    This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal suspensions confined between horizontal plates. A constitutive diffusion equation is used to model the dynamics of the particles suspended in a viscous fluid and it is coupled with the flow equations. We employ a simple model that was proposed by Metzger, Rahli & Yin ( J. Fluid Mech. , vol. 724, 2013, pp. 527–552) for the effective thermal diffusivity of suspensions. This model considers the effect of shear-induced diffusion and gives the thermal diffusivity increasing linearly with the thermal Péclet number ( Pe ) and the particle volume fraction ( ϕ ). Both linear stability analysis and numerical simulation based on the mathematical models are performed for various bulk particle volume fractions $$({\phi _b})$$ ranging from 0 to 0.3. The critical Rayleigh number $$(R{a_c})$$ grows gradually by increasing $${\phi _b}$$ from the critical value $$(R{a_c} = 1708)$$ for a pure Newtonian fluid, while the critical wavenumber $$({k_c})$$ remains constant at 3.12. The transition from the conduction state of suspensions is subcritical, whereas it is supercritical for the convection in a pure Newtonian fluid $$({\phi _b} = 0)$$ . The heat transfer in moderately dense suspensions $$({\phi _b} = 0.2\text{--}0.3)$$ is significantly enhanced by convection rolls for small Rayleigh number ( Ra ) close to $$R{a_c}$$ . We also found a power-law increase of the Nusselt number ( Nu ) with Ra , namely, $$Nu\sim R{a^b}$$ for relatively large values of Ra where the scaling exponent b decreases with $${\phi _b}$$ . Finally, it turns out that the shear-induced migration of particles can modify the heat transfer. 
    more » « less
  5. Gradient ascent methods are developed to compute incompressible flows that maximize heat transport between two isothermal no-slip parallel walls. Parameterizing the magnitude of the velocity fields by a Péclet number $Pe$ proportional to their root-mean-square rate of strain, the schemes are applied to compute two-dimensional flows optimizing convective enhancement of diffusive heat transfer, i.e. the Nusselt number $Nu$ up to $$Pe\approx 10^{5}$$ . The resulting transport exhibits a change of scaling from $$Nu-1\sim Pe^{2}$$ for $Pe<10$ in the linear regime to $$Nu\sim Pe^{0.54}$$ for $$Pe>10^{3}$$ . Optimal fields are observed to be approximately separable, i.e. products of functions of the wall-parallel and wall-normal coordinates. Analysis employing a separable ansatz yields a conditional upper bound $${\lesssim}Pe^{6/11}=Pe^{0.\overline{54}}$$ as $$Pe\rightarrow \infty$$ similar to the computationally achieved scaling. Implications for heat transfer in buoyancy-driven Rayleigh–Bénard convection are discussed. 
    more » « less