skip to main content

Title: Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CP-OLED applications
While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, g lum, hardly exceeds 10 −2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric ( μe ) and magnetic (μ m ) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high g lum values, i.e. up to 3–4 × 10 −2 . Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising g El of around 8 × 10 −3 . These results bring about further molecular design guidelines more » to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures. « less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Chemical Science
Page Range or eLocation-ID:
5522 to 5533
Sponsoring Org:
National Science Foundation
More Like this
  1. The rationalization of the molecular parameters that influence the intensity and sign of circularly polarized luminescence (CPL) for chiral emitters is a challenging task and remains of high interest for future chiral optoelectronic applications. In this report, we explore the design of novel chiral donor–acceptor structures based on C 2 -symmetric bicarbazole systems and compare the influence of the type of chirality, namely axial versus helical, and the electron withdrawing strength of the acceptor units on the resulting photophysical and CPL properties. By using carbonyl-based acceptors with both axial and helical electron donors, CP-Thermally Activated Delayed Fluoresence (TADF) can be obtained, whose efficiency depends on the dihedral angle between the carbazole moieties, related to the axial and helical chirality of the compounds. The latter also impacts the intensity of the CPL, which shows an opposite trend as a function of the polarity of the solvent, with a notably strong increase of the luminescence dissymmetry factor, g lum , for the helical donor–acceptor compounds related to a subtle reoarganization of the intramolecular charge-transfer process.
  2. We describe the synthesis of C 2 -symmetrical enantiopure lanthanide complexes (Tb, Eu, Sm, Dy) supported by the decadentate ligand N , N , N ′, N ′-tetrakis[(6-carboxypyridin-2-yl)methyl]-1,2-diaminocyclohexane (tpadac). The chiral tpadac ligand was designed to protect the lanthanide center from coordination of inner-sphere water molecules resulting in air- and water-stable, and highly luminescent complexes in water. The complexes exhibit strong chiroptical properties, with high dissymmetry factors g lum (0.11 to 0.25) and CPL brightness B CPL (up to 245 M −1 cm −1 for Tb, λ exc 295 nm, λ em 544 nm) in water. These are the first example of aqueous Sm CPL and second example of aqueous Dy CPL reported to date. The lanthanide complexes obtained gave a reversible CPL response to pH ranging from 6.0 to 8.0. In addition, distinctive CPL responses (including a change in CPL sign) towards toxic cations (Pb 2+ , Cd 2+ , and Mn 2+ ) were also observed, demonstrating the potential of our complexes to be used as aqueous probes.
  3. π-Helical push–pull dyes were prepared and their (chir)optical properties were investigated both experimentally and computationally. Specific fluorescent behaviour of bis-substituted system was observed with unprecedented solvent effect on the intensity of circularly polarized luminescence (CPL, dissymmetry factor decreasing from 10 −2 to 10 −3 with an increase in solvent polarity) that was linked to a change in symmetry of chiral excited state and suppression of interbranched exciton coupling. The results highlight the potential of CPL spectroscopy to study and provide a deeper understanding of electronic photophysical processes in chiral π-conjugated molecules.
  4. Generating oxygen vacancies (Vö) in vanadium pentoxide (V 2 O 5 ) has been demonstrated as an effective approach to tailor its electrochemical properties. The present study investigates three different kinds of conductive polymer (CP = PPy, PEDOT, and PANI) coated V 2 O 5 nanofibers with Vö generated at the interface during the polymerization process. Surface Vö form a local electric field and promote the charge transfer kinetics of the resulting Vö-V 2 O 5 /CP nanocables, and the accompanying V 4+ and V 3+ ions may also catalyze the redox reactions and improve the supercapacitor performance. The differences and similarities of three different CP coatings have been compared and discussed, and are dependent on their polymerization conditions and coating thickness. The distribution of Vö in the surface layer and in the bulk has been elaborated and the corresponding effects on the electrochemical properties and supercapacitor performance have also been investigated. Vö-V 2 O 5 /CP can deliver a high capacity of up to 614 F g −1 at a current rate of 0.5 A g −1 and supercapacitors with Vö-V 2 O 5 /CP demonstrated excellent cycling stability over 15 000 cycles at a rate of 10 A gmore »−1 .« less
  5. Introduction:Current brain-computer interfaces (BCIs) primarily rely on visual feedback. However, visual feedback may not be sufficient for applications such as movement restoration, where somatosensory feedback plays a crucial role. For electrocorticography (ECoG)-based BCIs, somatosensory feedback can be elicited by cortical surface electro-stimulation [1]. However, simultaneous cortical stimulation and recording is challenging due to stimulation artifacts. Depending on the orientation of stimulating electrodes, their distance to the recording site, and the stimulation intensity, these artifacts may overwhelm the neural signals of interest and saturate the recording bioamplifiers, making it impossible to recover the underlying information [2]. To understand how these factors affect artifact propagation, we performed a preliminary characterization of ECoG signals during cortical stimulation.Materials/Methods/ResultsECoG electrodes were implanted in a 39-year old epilepsy patient as shown in Fig. 1. Pairs of adjacent electrodes were stimulated as a part of language cortical mapping. For each stimulating pair, a charge-balanced biphasic square pulse train of current at 50 Hz was delivered for five seconds at 2, 4, 6, 8 and 10 mA. ECoG signals were recorded at 512 Hz. The signals were then high-pass filtered (≥1.5 Hz, zero phase), and the 5-second stimulation epochs were segmented. Within each epoch, artifact-induced peaks were detectedmore »for each electrode, except the stimulating pair, where signals were clipped due to amplifier saturation. These peaks were phase-locked across electrodes and were 20 ms apart, thus matching the pulse train frequency. The response was characterized by calculating the median peak within the 5-second epochs. Fig. 1 shows a representative response of the right temporal grid (RTG), with the stimulation channel at RTG electrodes 14 and 15. It also shows a hypothetical amplifier saturation contour of an implantable, bi-directional, ECoG-based BCI prototype [2], assuming the supply voltage of 2.2 V and a gain of 66 dB. Finally, we quantify the worstcase scenario by calculating the largest distance between the saturation contour and the midpoint of each stimulating channel.Discussion:Our results indicate that artifact propagation follows a dipole potential distribution with the extent of the saturation region (the interior of the white contour) proportional to the stimulation amplitude. In general, the artifacts propagated farthest when a 10 mA current was applied with the saturation regions extending from 17 to 32 mm away from the midpoint of the dipole. Consistent with the electric dipole model, this maximum spread happened along the direction of the dipole moment. An exception occurred at stimulation channel RTG11-16, for which an additional saturation contour emerged away from the dipole contour (not shown), extending the saturation region to 41 mm. Also, the worst-case scenario was observed at 6 mA stimulation amplitude. This departure could be a sign of a nonlinear, switch-like behavior, wherein additional conduction pathways could become engaged in response to sufficiently high stimulation.Significance:While ECoG stimulation is routinely performed in the clinical setting, quantitative studies of the resulting signals are lacking. Our preliminary study demonstrates that stimulation artifacts largely obey dipole distributions, suggesting that the dipole model could be used to predict artifact propagation. Further studies are necessary to ascertain whether these results hold across other subjects and combinations of stimulation/recording grids. Once completed, these studies will reveal practical design constraints for future implantable bi-directional ECoG-based BCIs. These include parameters such as the distances between and relative orientations of the stimulating and recording electrodes, the choice of the stimulating electrodes, the optimal placement of the reference electrode, and the maximum stimulation amplitude. These findings would also have important implications for the design of custom, low-power bioamplifiers for implantable bi-directional ECoG-based BCIs.References:[1] Hiremath, S. V., et al. "Human perception of electrical stimulation on the surface of somatosensory cortex." PloS one 12.5 (2017): e0176020.[2] Rouse, A. G., et al. "A chronic generalized bi-directional brain-machine interface." Journal of Neural Engineering 8.3 (2011): 036018« less