skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fresnel models for gravitational wave effects on pulsar timing
ABSTRACT Merging supermassive black hole binaries produce low-frequency gravitational waves, which pulsar timing experiments are searching for. Much of the current theory is developed within the plane-wave formalism, and here we develop the more general Fresnel formalism. We show that Fresnel corrections to gravitational wave timing residual models allow novel measurements to be made, such as direct measurements of the source distance from the timing residual phase and frequency, as well as direct measurements of chirp mass from a monochromatic source. Probing the Fresnel corrections in these models will require future pulsar timing arrays with more distant pulsars across our Galaxy (ideally at the distance of the Magellanic Clouds), timed with precisions less than 100 ns, with distance uncertainties reduced to the order of the gravitational wavelength. We find that sources with chirp mass of order 109 M⊙ and orbital frequency ω0 > 10 nHz are good candidates for probing Fresnel corrections. With these conditions met, the measured source distance uncertainty can be made less than 10 per cent of the distance to the source for sources out to ∼100 Mpc, source sky localization can be reduced to sub-arcminute precision, and source volume localization can be made to less than 1 Mpc3 for sources out to 1-Gpc distances.  more » « less
Award ID(s):
1912649
PAR ID:
10253440
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4531 to 4554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Pulsar timing arrays (PTAs) are searching for gravitational waves from supermassive black hole binaries (SMBHBs). Here we show how future PTAs could use a detection of gravitational waves from individually resolved SMBHB sources to produce a purely gravitational wave-based measurement of the Hubble constant. This is achieved by measuring two separate distances to the same source from the gravitational wave signal in the timing residual: the luminosity distance DL through frequency evolution effects, and the parallax distance Dpar through wavefront curvature (Fresnel) effects. We present a generalized timing residual model including these effects in an expanding universe. Of these two distances, Dpar is challenging to measure due to the pulsar distance wrapping problem, a degeneracy in the Earth-pulsar distance and gravitational wave source parameters that requires highly precise, sub-parsec level, pulsar distance measurements to overcome. However, in this paper we demonstrate that combining the knowledge of two SMBHB sources in the timing residual largely removes the wrapping cycle degeneracy. Two sources simultaneously calibrate the PTA by identifying the distances to the pulsars, which is useful in its own right, and allow recovery of the source luminosity and parallax distances which results in a measurement of the Hubble constant. We find that, with optimistic PTAs in the era of the Square Kilometre Array, two fortuitous SMBHB sources within a few hundred Mpc could be used to measure the Hubble constant with a relative uncertainty on the order of 10 per cent. 
    more » « less
  2. Abstract When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) × 10 9   M ⊙ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over “blind” pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences. 
    more » « less
  3. Abstract We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15 yr data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves (GWs). This is NANOGrav’s fifth public data release, including both “narrowband” and “wideband” time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by 3 yr, now spanning nearly 16 yr for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic GW background. 
    more » « less
  4. Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287. 
    more » « less
  5. Abstract This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves are allowing us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamicalextreme gravity regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review then discusses gravitational-wave tests using compact binary systems, and ends with a description of the first gravitational wave observations by advanced LIGO, the stochastic gravitational wave background observations by pulsar timing arrays, and the tests that can be performed with them. 
    more » « less