skip to main content

Title: Biological correlates of sea urchin recruitment in kelp forest and urchin barren habitats
Shifts between the alternate stable states of sea urchin barren grounds and kelp forests correspond to sea urchin density. In the Aleutian Archipelago, green sea urchins Strongylocentrotus polyacanthus are the dominant herbivores that graze kelp forests. Sea urchin recruitment is an important driver that influences sea urchin density, particularly in the absence of top-down control from a keystone predator such as the sea otter Enhydra lutris . To understand how the biological community may influence patterns of sea urchin recruitment, we compared sea urchin recruit (size ≤20 mm) densities with biomass of other benthic organisms in both barren ground and kelp forest habitats at 9 islands across the Aleutian Archipelago. Patterns of biological community structure between the 2 habitats did not explain patterns of sea urchin recruits; however, the same 10 specific taxa were found to correlate with sea urchin recruits in each habitat. Taxa that showed strong positive correlations included Codium, Constantinea, Schizymenia, and hydrozoans, while strong negative correlations were observed with Pachyarthron and Pugettia . Weak positive correlations were observed with Alcyonidium and ascidiaceans in both habitats, while weak variable relationships were detected with Polysiphonia and Corallina between habitats. The observed species-specific relationships may be due to small sea urchin displacement by larger conspecifics, larval responses to settlement cues, post-settlement survival via biogenic refugia, or potentially predation. These potential species-specific interactions were apparent, regardless of habitat, and it can be inferred that they would be preserved in the presence or absence of keystone predation.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Marine Ecology Progress Series
Page Range / eLocation ID:
115 to 125
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Alternate attractors have been shown to exist in a variety of terrestrial and aquatic systems,e.g. temperate forests, savannas, shallow lakes, wetlands, coral reefs, kelp forests. The shift from one attractor to another, also referred to as a regime shift, is thought to occur when a system passes some critical threshold such that the trajectory of the system changes direction. Alternate attractors in population dynamics can also exist, leading to alternate stable states in the population abundance of a species. This study explored alternate attractors in the population dynamics of the Indo‐Pacific sea urchinDiadema savignyiand the potential underlying mechanisms that promote its bi‐stability. In Moorea, French Polynesia, the local abundance ofD. savignyi, a functionally important herbivore in lagoon habitats, occurs in two states: (i) solitary individuals that occupy crevices in low densities and (ii) aggregations of tens to hundreds of individuals. These different states are temporally stable and are not explained by spatial differences in recruitment rates of juveniles. A field experiment revealed that the per capita mortality rate of adultD. savignyiwas substantially lower at sites where urchins occurred in aggregations compared with sites at which they were solitary individuals. An additional experiment showed that per capita mortality decreased with increasing aggregation size. Individuals in high‐density aggregations, however, had significantly smaller test diameters than solitary individuals, indicating that individuals in aggregations may be food limited. Collectively, the evidence suggests that the two different local abundance states ofD. savignyiresult from negative feedback loops where high local density can be maintained by aggregative behavior that greatly reduces per capita risk of predation when the local number of adult sea urchins is sufficiently large; sites with few sea urchins remain at low density because individuals are more susceptible to predation when crevices are occupied but there are not enough individuals to form large aggregations. Thus, there may be alternate attractors in the population dynamics ofD. savignyithat can produce either persistently low or high local population densities.

    more » « less
  2. null (Ed.)
    We examined the patterns of propagule recruitment to assess the timescale and trajectory of succession and the possible roles of physical factors in controlling benthic community structure in a shallow High Arctic kelp bed in the Beaufort Sea, Alaska. Spatial differences in established epilithic assemblages were evaluated against static habitat attributes (depth, distance from river inputs) and environmental factors (temperature, salinity, current speed, underwater light) collected continuously over 2–6 years. Our measurements revealed that bottom waters remained below freezing (mean winter temperatures ∼−1.8°C) and saline (33–36) with negligible light levels for 8–9 months. In contrast, the summer open water period was characterized by variable salinities (22–36), higher temperatures (up to 8–9°C) and measurable irradiance (1–8 mol photons m –2 day –1 ). An inshore, near-river site experienced strong, acute, springtime drops in salinity to nearly 0 in some years. The epilithic community was dominated by foliose red algae (47–79%), prostrate kelps (2–19%), and crustose coralline algae (0–19%). Strong spatial distinctions among sites included a positive correlation between cover by crustose coralline algae and distance to river inputs, but we found no significant relationships between multi-year means of physical factors and functional groups. Low rates of colonization and the very slow growth rates of recruits are the main factors that contribute to prolonged community development, which augments the influence of low-frequency physical events over local community structure. Mortality during early succession largely determines crustose coralline algal and invertebrate prevalence in the established community, while kelp seem to be recruitment-limited. On scales > 1 m, community structure varies with bathymetry and exposure to freshwater intrusion, which regulate frequency of primary and physiological disturbance. Colonization rates (means of 3.3–69.9 ind. 100 cm –1 year –1 site –1 ) were much lower than studies in other Arctic kelp habitats, and likely reflect the nature of a truly High Arctic environment. Our results suggest that community development in the nearshore Beaufort Sea occurs over decades, and is affected by combinations of recruitment limitation, primary disturbance, and abiotic stressors. While seasonality exerts strong influence on Arctic systems, static habitat characteristics largely determine benthic ecosystem structure by integrating seasonal and interannual variability over timescales longer than most ecological studies. 
    more » « less
  3. Abstract

    With increasing biodiversity loss occurring worldwide, there is a need to understand how these losses will affect ecosystem structure and function. Biodiversity loss leads to changes in species interactions and alters the trophic complexity of food webs. These alterations to trophic complexity can be described by changes to the diversity of food resources and the diversity of trophic levels. To understand how biodiversity affects trophic complexity of food webs, we used 10 islands across the Aleutian Archipelago to compare the alternate state communities found in kelp forest ecosystems (kelp forest and urchin barren communities) and then compared these to natural reference communities without local benthic production (their associated offshore communities). We constructed food webs for each community across the Aleutian Archipelago using primary producer and consumer carbon (δ13C, a proxy for food sources to a consumer) and nitrogen (δ15N, a proxy for consumer trophic level) stable isotope values. Our findings suggest that biodiversity loss (i.e., phase change from kelp forest to urchin barren) leads to reductions in trophic complexity, which was similar to naturally occurring communities with low local resource biodiversity. This was expressed by lower consumer isotopic dietary niche areas, especially omnivores and herbivores, and lower omnivore and carnivore trophic levels within the urchin barren communities. We clarify how biodiversity promotes food resources and increases trophic levels and complexity through critical trophic conduits.

    more » « less
  4. Abstract

    Temporally consistent individual differences in behavior impact many ecological processes. We simultaneously examined the effects of individual variation in prey activity level, covering behavior, and body size on prey survival with predators using an urchin–lobster system. Specifically, we tested the hypothesis that slow‐moving purple sea urchins (Strongylocentrotus purpuratus) and urchins who deploy extensive substrate (pebbles and stones) covering behavior will out‐survive active urchins that deploy little to no covering behavior when pitted against a predator, the California spiny lobster (Panulirus interruptus). We evaluated this hypothesis by first confirming whether individual urchins exhibit temporally consistent differences in activity level and covering behavior, which they did. Next, we placed groups of four urchins in mesocosms with single lobster and monitored urchin survival for 108 hr. High activity level was negatively associated with survival, whereas urchin size and covering behavior independently did not influence survival. The negative effect of urchin activity level on urchin survival was strong for smaller urchins and weaker for large urchins. Taken together, these results suggest that purple urchin activity level and size jointly determine their susceptibility to predation by lobsters. This is potentially of great interest, because predation by recovering lobster populations could alter the stability of kelp forests by culling specific phenotypes, like foraging phenotypes, from urchin populations.

    more » « less
  5. Abstract

    Sea urchins are voracious herbivores that influence the ecological structure and function of nearshore ecosystems throughout the world. Like many species that produce planktonic larvae, their recruitment is thought to be particularly sensitive to climatic fluctuations that directly or indirectly affect adult reproduction and larval transport and survival. Yet how climate alters sea urchin populations in space and time by modifying larval recruitment and year‐class strength on the time‐scales that regulate populations remains understudied. Using a, spatially replicated weekly‐biweekly data set spanning 27 yr and 1100 km of coastline, we characterized seasonal, interannual, and spatial patterns of larval settlement of the purple sea urchin (Strongylocentrotus purpuratus). We show that large spatial differences in temporal patterns of larval settlement were associated with different responses to fluctuations in ocean temperature and climate. Importantly, we found a strong correlation between larval settlement and regional year class strength suggesting that such temporal and spatial variation in settlement plays an important role in controlling population dynamics. These results provide strong evidence over extensive temporal and spatial domains that climatic fluctuations shape broad‐scale patterns of larval settlement and subsequent population structure of an important marine herbivore known to control the productivity, community state, and provisioning services of marine ecosystems.

    more » « less