skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biological correlates of sea urchin recruitment in kelp forest and urchin barren habitats
Shifts between the alternate stable states of sea urchin barren grounds and kelp forests correspond to sea urchin density. In the Aleutian Archipelago, green sea urchins Strongylocentrotus polyacanthus are the dominant herbivores that graze kelp forests. Sea urchin recruitment is an important driver that influences sea urchin density, particularly in the absence of top-down control from a keystone predator such as the sea otter Enhydra lutris . To understand how the biological community may influence patterns of sea urchin recruitment, we compared sea urchin recruit (size ≤20 mm) densities with biomass of other benthic organisms in both barren ground and kelp forest habitats at 9 islands across the Aleutian Archipelago. Patterns of biological community structure between the 2 habitats did not explain patterns of sea urchin recruits; however, the same 10 specific taxa were found to correlate with sea urchin recruits in each habitat. Taxa that showed strong positive correlations included Codium, Constantinea, Schizymenia, and hydrozoans, while strong negative correlations were observed with Pachyarthron and Pugettia . Weak positive correlations were observed with Alcyonidium and ascidiaceans in both habitats, while weak variable relationships were detected with Polysiphonia and Corallina between habitats. The observed species-specific relationships may be due to small sea urchin displacement by larger conspecifics, larval responses to settlement cues, post-settlement survival via biogenic refugia, or potentially predation. These potential species-specific interactions were apparent, regardless of habitat, and it can be inferred that they would be preserved in the presence or absence of keystone predation.  more » « less
Award ID(s):
1757348
PAR ID:
10253445
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
663
ISSN:
0171-8630
Page Range / eLocation ID:
115 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alfaro, Andrea C; Ragg, Norman; Venter, Leonie (Ed.)
    Understanding the recruitment dynamics of invertebrates in kelp forests is critical to informing climate-ready restoration. Here we examine abalone and sea urchin recruitment (3–20 mm in size) patterns in northern California across a period of drastic change. Annual surveys were conducted before, during and after the MHW (2014–2016), the loss of a major predatory sea star (2012–2016) and the collapse of a bull kelp forest in 2014. Divers surveyed artificial reef recruitment modules (n = 12) over 20 years in an area that once supported dense bull kelp, Nereocystis leutkeana, forests and the world's largest recreational abalone fishery. From 2016 to 2022, we tracked the decline of red abalone, Haliotis rufescens, recruitment and the rise of purple sea urchin, Strongylocentrotus purpuratus, recruitment. Adult densities of purple sea urchins increased as did newly settled sea urchins (<3 mm), while adult and newly settled red abalone declined. Eight years after the kelp forest collapse, red abalone recruitment remained low and sea urchin recruitment continued to increase. Recruitment patterns can inform both abalone restoration targets and sea urchin dynamics as part of a more holistic kelp forest recovery plan that is responsive to climate change drivers. 
    more » « less
  2. The recent collapse of predatory sunflower sea stars ( Pycnopodia helianthoides ) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins ( Strongylocentrotus purpuratus ) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d −1 , and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales. 
    more » « less
  3. Abstract Sea urchins are voracious herbivores that influence the ecological structure and function of nearshore ecosystems throughout the world. Like many species that produce planktonic larvae, their recruitment is thought to be particularly sensitive to climatic fluctuations that directly or indirectly affect adult reproduction and larval transport and survival. Yet how climate alters sea urchin populations in space and time by modifying larval recruitment and year‐class strength on the time‐scales that regulate populations remains understudied. Using a, spatially replicated weekly‐biweekly data set spanning 27 yr and 1100 km of coastline, we characterized seasonal, interannual, and spatial patterns of larval settlement of the purple sea urchin (Strongylocentrotus purpuratus). We show that large spatial differences in temporal patterns of larval settlement were associated with different responses to fluctuations in ocean temperature and climate. Importantly, we found a strong correlation between larval settlement and regional year class strength suggesting that such temporal and spatial variation in settlement plays an important role in controlling population dynamics. These results provide strong evidence over extensive temporal and spatial domains that climatic fluctuations shape broad‐scale patterns of larval settlement and subsequent population structure of an important marine herbivore known to control the productivity, community state, and provisioning services of marine ecosystems. 
    more » « less
  4. Abstract Sea urchins are key grazers in coastal seas, where they can survive a variety of conditions and diets, enhancing their ecological impact on kelp forests and other ecosystems. Using 16S rRNA gene sequencing, we characterized bacterial communities associated with guts of the two dominant sea urchin species in southern California, the red urchinMesocentrotus franciscanus, and the purple urchinStrongylocentrotus purpuratus. Our results show that the two urchin species have distinct gut microbiomes that vary with habitat. The taxonomic composition of their microbiomes suggests that they may facilitate digestion of food and be a source of nutrition themselves. These results highlight the role of microbiomes within macroorganisms as an extended ecological trait, and suggest that microbes may be crucial to resource use and partitioning in co‐occurring species. 
    more » « less
  5. Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages. 
    more » « less