Abstract BackgroundSpotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. ResultsWe collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. ConclusionResults show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions. Graphical abstract
more »
« less
Sea urchin microbiomes vary with habitat and resource availability
Abstract Sea urchins are key grazers in coastal seas, where they can survive a variety of conditions and diets, enhancing their ecological impact on kelp forests and other ecosystems. Using 16S rRNA gene sequencing, we characterized bacterial communities associated with guts of the two dominant sea urchin species in southern California, the red urchinMesocentrotus franciscanus, and the purple urchinStrongylocentrotus purpuratus. Our results show that the two urchin species have distinct gut microbiomes that vary with habitat. The taxonomic composition of their microbiomes suggests that they may facilitate digestion of food and be a source of nutrition themselves. These results highlight the role of microbiomes within macroorganisms as an extended ecological trait, and suggest that microbes may be crucial to resource use and partitioning in co‐occurring species.
more »
« less
- Award ID(s):
- 1831937
- PAR ID:
- 10374936
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2378-2242
- Page Range / eLocation ID:
- p. 119-126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nanos genes encode essential RNA‐binding proteins involved in germline determination and germline stem cell maintenance. When examining diverse classes of echinoderms, typically three, sometimes four, nanos genes are present. In this analysis, we identify and annotate nine nanos orthologs in the green sea urchin,Lytechinus variegatus(Lv). All nine genes are transcribed and grouped into three distinct classes. Class one includes the germline Nanos, with one member: Nanos2. Class two includes Nanos3‐like genes, with significant sequence similarity to Nanos3 in the purple sea urchin,Strongylocentrotus purpuratus(Sp), but with wildly variable expression patterns. The third class includes several previously undescribed nanos zinc‐finger genes that may be the result of duplications of Nanos2. All nine nanos transcripts occupy unique genomic loci and are expressed with unique temporal profiles during development. Importantly, here we describe and characterize the unique genomic location, conservation, and phylogeny of the Lv ortholog of the well‐studied Sp Nanos2. However, in addition to the conserved germline functioning Nanos2, the green sea urchin appears to be an outlier in the echinoderm phyla with eight additional nanos genes. We hypothesize that this expansion of nanos gene members may be the result of a previously uncharacterized L1‐class transposon encoded on the opposite strand of a nanos2 pseudogene present on chromosome 12 in this species. The expansion of nanos genes described here represents intriguing insights into germline specification and nanos evolution in this species of sea urchin.more » « less
-
Organisms living on the seafloor are subject to encrustations by a wide variety of animals, plants and microbes. Sea urchins, however, thwart this covering. Despite having a sophisticated immune system, there is no clear molecular mechanism that allows sea urchins to remain free of epibiotic microorganisms. Here, we test the hypothesis that pigmentation biosynthesis in sea urchin spines influences their interactions with microbesin vivousing CRISPR/Cas9. We report three primary findings. First, the microbiome of sea urchin spines is species-specific and much of this community is lost in captivity. Second, different colour morphs associate with bacterial communities that are similar in taxonomic composition, diversity and evenness. Lastly, loss of the pigmentation biosynthesis genes polyketide synthase and flavin-dependent monooxygenase induces a shift in which bacterial taxa colonize sea urchin spines. Therefore, our results are consistent with the hypothesis that host pigmentation biosynthesis can, but may not always, influence the microbiome in sea urchin spines.more » « less
-
Abstract Sea urchins are voracious herbivores that influence the ecological structure and function of nearshore ecosystems throughout the world. Like many species that produce planktonic larvae, their recruitment is thought to be particularly sensitive to climatic fluctuations that directly or indirectly affect adult reproduction and larval transport and survival. Yet how climate alters sea urchin populations in space and time by modifying larval recruitment and year‐class strength on the time‐scales that regulate populations remains understudied. Using a, spatially replicated weekly‐biweekly data set spanning 27 yr and 1100 km of coastline, we characterized seasonal, interannual, and spatial patterns of larval settlement of the purple sea urchin (Strongylocentrotus purpuratus). We show that large spatial differences in temporal patterns of larval settlement were associated with different responses to fluctuations in ocean temperature and climate. Importantly, we found a strong correlation between larval settlement and regional year class strength suggesting that such temporal and spatial variation in settlement plays an important role in controlling population dynamics. These results provide strong evidence over extensive temporal and spatial domains that climatic fluctuations shape broad‐scale patterns of larval settlement and subsequent population structure of an important marine herbivore known to control the productivity, community state, and provisioning services of marine ecosystems.more » « less
-
null (Ed.)Shifts between the alternate stable states of sea urchin barren grounds and kelp forests correspond to sea urchin density. In the Aleutian Archipelago, green sea urchins Strongylocentrotus polyacanthus are the dominant herbivores that graze kelp forests. Sea urchin recruitment is an important driver that influences sea urchin density, particularly in the absence of top-down control from a keystone predator such as the sea otter Enhydra lutris . To understand how the biological community may influence patterns of sea urchin recruitment, we compared sea urchin recruit (size ≤20 mm) densities with biomass of other benthic organisms in both barren ground and kelp forest habitats at 9 islands across the Aleutian Archipelago. Patterns of biological community structure between the 2 habitats did not explain patterns of sea urchin recruits; however, the same 10 specific taxa were found to correlate with sea urchin recruits in each habitat. Taxa that showed strong positive correlations included Codium, Constantinea, Schizymenia, and hydrozoans, while strong negative correlations were observed with Pachyarthron and Pugettia . Weak positive correlations were observed with Alcyonidium and ascidiaceans in both habitats, while weak variable relationships were detected with Polysiphonia and Corallina between habitats. The observed species-specific relationships may be due to small sea urchin displacement by larger conspecifics, larval responses to settlement cues, post-settlement survival via biogenic refugia, or potentially predation. These potential species-specific interactions were apparent, regardless of habitat, and it can be inferred that they would be preserved in the presence or absence of keystone predation.more » « less
An official website of the United States government
