skip to main content


Title: Double degenerate candidates in the open cluster NGC 6633
Abstract The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present we are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters.  more » « less
Award ID(s):
1910551
NSF-PAR ID:
10253504
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Astronomical Union
Volume:
15
Issue:
S357
ISSN:
1743-9213
Page Range / eLocation ID:
20 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract White dwarfs (WDs) in open star clusters are a highly useful ensemble of stars. While numerous researchers use open cluster WDs to study the initial-final mass relation, numerous other evolutionary studies are also enabled by this sample of stars, including searches for stochastic mass loss, studies of binary star evolution, and measurements of metallicity impacts on WD formation and evolution. However, it is crucial to use astrometric data such as proper motions to remove contaminating field WDs from open cluster samples; multi-epoch ground based imaging is needed for most open cluster WDs. Also, the strongly correlated errors in the initial mass - final mass plane must be considered; we illustrate the importance of this consideration using a large open cluster WD sample and Monte Carlo techniques. 
    more » « less
  2. ABSTRACT

    We present a detailed model atmosphere analysis of 14001 DA white dwarfs from the Montreal White Dwarf Database with ultraviolet photometry from the GALEX mission. We use the 100 pc sample, where the extinction is negligible, to demonstrate that there are no major systematic differences between the best-fitting parameters derived from optical only data and the optical + UV photometry. GALEX FUV and NUV data improve the statistical errors in the model fits, especially for the hotter white dwarfs with spectral energy distributions that peak in the UV. Fitting the UV to optical spectral energy distributions also reveals UV-excess or UV-deficit objects. We use two different methods to identify outliers in our model fits. Known outliers include objects with unusual atmospheric compositions, strongly magnetic white dwarfs, and binary white dwarfs, including double degenerates and white dwarf + main-sequence systems. We present a list of 89 newly identified outliers based on GALEX UV data; follow-up observations of these objects will be required to constrain their nature. Several current and upcoming large-scale spectroscopic surveys are targeting >105 white dwarfs. In addition, the ULTRASAT mission is planning an all-sky survey in the NUV band. A combination of the UV data from GALEX and ULTRASAT and optical data on these large samples of spectroscopically confirmed DA white dwarfs will provide an excellent opportunity to identify unusual white dwarfs in the solar neighbourhood.

     
    more » « less
  3. Abstract

    We present a robust methodology for identifying photometric binaries in star clusters. Using Gaia DR3, Pan-STARRS, and Two Micron All Sky Survey data, we self-consistently define the cluster parameters and binary demographics for the open clusters (OCs) NGC 2168 (M35), NGC 7789, NGC 6819, NGC 2682 (M67), NGC 188, and NGC 6791. These clusters span in age from ∼200 Myr (NGC 2168) to more than ∼8 Gyr (NGC 6791) and have all been extensively studied in the literature. We use the Bayesian Analysis of Stellar Evolution software suite to derive the age, distance, reddening, metallicity, binary fraction, and binary mass-ratio posterior distributions for each cluster. We perform a careful analysis of our completeness and also compare our results to previous spectroscopic surveys. For our sample of main-sequence stars with masses between 0.6 and 1M, we find that these OCs have similar binary fractions that are also broadly consistent with the field multiplicity fraction. Within the clusters, the binary fraction increases dramatically toward the cluster centers, likely a result of mass segregation. Furthermore nearly all clusters show evidence of mass segregation within the single and binary populations. The OC binary fraction increases significantly with cluster age in our sample, possibly due to a combination of mass-segregation and cluster-dissolution processes. We also find a hint of an anticorrelation between binary fraction and cluster central density as well as total cluster mass, possibly due to an increasing frequency of higher-energy close stellar encounters that inhibit long-period binary survival and/or formation.

     
    more » « less
  4. ABSTRACT

    It has been argued that heavy binaries composed of neutron stars (NSs) and millisecond pulsars (MSPs) can end up in the outskirts of star clusters via an interaction with a massive black hole (BH) binary expelling them from the core. We argue here, however, that this mechanism will rarely account for such observed objects. Only for primary masses ≲100 M⊙ and a narrow range of orbital separations should a BH–BH binary be both dynamically hard and produce a sufficiently low recoil velocity to retain the NS binary in the cluster. Hence, BH binaries are in general likely to eject NSs from clusters. We explore several alternative mechanisms that would cause NS/MSP binaries to be observed in the outskirts of their host clusters after a Hubble time. The most likely mechanism is a three-body interaction involving the NS/MSP binary and a normal star. We compare to Monte Carlo simulations of cluster evolution for the globular clusters NGC 6752 and 47 Tuc, and show that the models not only confirm that normal three-body interactions involving all stellar-mass objects are the dominant mechanism for putting NS/MSP binaries into the cluster outskirts, but also reproduce the observed NS/MSP binary radial distributions without needing to invoke the presence of a massive BH binary. Higher central densities and an episode of core collapse can broaden the radial distributions of NSs/MSPs and NS/MSP binaries due to three-body interactions, making these clusters more likely to host NSs in the cluster outskirts.

     
    more » « less
  5. ABSTRACT

    In the third paper of this series aimed at developing the tools for analysing resolved stellar populations using the cameras on board of the James Webb Space Telescope (JWST), we present a detailed multiband study of the 2 Gyr Galactic open cluster NGC 2506. We employ public calibration data sets collected in multiple filters to: (i) derive improved effective Point Spread Functions (ePSFs) for 10 NIRCam filters; (ii) extract high-precision photometry and astrometry for stars in the cluster, approaching the main sequence (MS) lower mass of ∼0.1 M⊙; and (iii) take advantage of the synergy between JWST and Gaia DR3 to perform a comprehensive analysis of the cluster’s global and local properties. We derived a MS binary fraction of ∼57.5 per cent, extending the Gaia limit (∼0.8 M⊙) to lower masses (∼0.4 M⊙) with JWST. We conducted a study on the mass functions (MFs) of NGC 2506, mapping the mass segregation with Gaia data, and extending MFs to lower masses with the JWST field. We also combined information on the derived MFs to infer an estimate of the cluster present-day total mass. Lastly, we investigated the presence of white dwarfs (WDs) and identified a strong candidate. However, to firmly establish its cluster membership, as well as that of four other WD candidates and of the majority of faint low-mass MS stars, further JWST equally deep observations will be required. We make publicly available catalogues, atlases, and the improved ePSFs.

     
    more » « less