Abstract This article presents new measurements of the fragmentation properties of jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction z r of transverse momentum carried by subjets of radius r within jets of radius R . Charged-particle jets are reconstructed at midrapidity using the anti- k T algorithm with jet radius R = 0 . 4, and subjets are reconstructed by reclustering the jet constituents using the anti- k T algorithm with radii r = 0 . 1 and r = 0 . 2. In proton–proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the z r distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The z r distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark–gluon plasma (QGP). We find no significant modification of z r distributions in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for z r < 0 . 95, as predicted by several jet quenching models. As z r → 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.
more »
« less
QGP modification to single inclusive jets in a calibrated transport model
A bstract We study inclusive jet suppression and modifications in the quark-gluon plasma (QGP) with a transport-based model. The model includes vacuum-like parton shower evolution at high-virtuality, a linearized transport for jet-medium interactions, and a simple ansatz for the jet-induced hydrodynamic response of the medium. Model parameters are calibrated to nuclear modification factors for inclusive hadron $$ {R}_{AA}^h $$ R AA h and single inclusive jets $$ {R}_{AA}^j $$ R AA j with cone size R = 0 . 4 in 0–10% central Au-Au and Pb-Pb collisions measured at the RHIC and LHC. The calibrated model consistently describes the cone-size dependent $$ {R}_{AA}^j $$ R AA j ( R ), modifications to inclusive jet fragmentation functions and jet shape. We discuss the origin of these modifications by analyzing the medium-induced jet energy flow in this model and elucidate the interplay of hard parton evolution and jet-induced medium response. In particular, we demonstrate that the excess of soft hadrons at p T ∼ 2 GeV/ c in jet fragmentation function and jet shape at large $$ r=\sqrt{\Delta {\eta}^2+\Delta {\phi}^2} $$ r = Δ η 2 + Δ ϕ 2 are consequences of both soft medium-induced gluon radiation and jet-induced medium excitation.
more »
« less
- Award ID(s):
- 2004571
- PAR ID:
- 10253564
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)Jets are produced in early stages of heavy-ion collisions and undergo modified showering in the quark-gluon plasma (QGP) medium relative to a vacuum case. These modifications can be measured using observables like jet momentum profile and generalized angularities to study the details of jetmedium interactions. Jet momentum profile (ρ(r)) encodes radially differential information about jet broadening and has shown migration of charged energy towards the jet periphery in Pb+Pb collisions at the LHC. Measurements of generalized angularities (girthgand momentum dispersionpTD) and LeSub (difference between leading and subleading constituents) from Pb+Pb collisions at the LHC show harder, or more quark-like jet fragmentation, in the presence of the medium. Measuring these distributions in heavy-ion collisions at RHIC will help us further characterize the jet-medium interactions in a phase-space region complimentary to that of the LHC. In this contribution, we present the first measurements of fully correctedg,pTDand LeSub observables using hard-core jets in Au+Au collisions at √SNN= 200 GeV, collected by the STAR experiment at RHIC.more » « less
-
A bstract Jet fragmentation transverse momentum ( j T ) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti- k T algorithm with resolution parameter R = 0 . 4 in the pseudorapidity range |η| < 0 . 25. The j T values are calculated for charged particles inside a fixed cone with a radius R = 0 . 4 around the reconstructed jet axis. The measured j T distributions are compared with a variety of parton-shower models. Herwig and P ythia 8 based models describe the data well for the higher j T region, while they underestimate the lower j T region. The j T distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher j T values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower j T values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation.more » « less
-
A bstract The production of non-prompt D 0 mesons from beauty-hadron decays was measured at midrapidity (| y | < 0 . 5) in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of $$ \sqrt{{\textrm{s}}_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the ALICE experiment at the LHC. Their nuclear modification factor ( R AA ), measured for the first time down to p T = 1 GeV /c in the 0–10% and 30–50% centrality classes, indicates a significant suppression, up to a factor of about three, for p T > 5 GeV /c in the 0–10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronisation mechanism. The ratio of the non-prompt to prompt D 0 -meson R AA is larger than unity for p T > 4 GeV /c in the 0–10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass.more » « less
-
Abstract Partons traversing the strongly interacting medium produced in heavy-ion collisions are expected to lose energy depending on their color charge and mass. We measure the nuclear modification factors for charm- and bottom-decay electrons, defined as the ratio of yields, divided by the number of binary nucleon–nucleon collisions, in $$\sqrt{s_{\textrm{NN}}}=200$$ s NN = 200 GeV Au+Au collisions to p + p collisions ( $$R_{\textrm{AA}}$$ R AA ), or in central to peripheral Au+Au collisions ( $$R_{\textrm{CP}}$$ R CP ). We find the bottom-decay electron $$R_{\textrm{AA}}$$ R AA and $$R_{\textrm{CP}}$$ R CP to be significantly higher than those of charm-decay electrons. Model calculations including mass-dependent parton energy loss in a strongly coupled medium are consistent with the measured data. These observations provide evidence of mass ordering of charm and bottom quark energy loss when traversing through the strongly coupled medium created in heavy-ion collisions.more » « less
An official website of the United States government

