skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of Response Based One Shot Controls Handling Missing Phasor Measurements
With the advent of real-time PMU data acquisition technology, the possibility of solutions to several instability problems in power system has increased. However, PMUs may undergo different data quality issues like recording bad data or missing data. Some paper mentions about 5-10% of missing samples in some historical PMU's dataset. This paper assumes 0-10% of missing phasor samples by randomly deleting measurements and explores imputation methods of handling missing data in real time. The simulation is carried out in a DT-based stability prediction and one-shot control scheme of WECC's 176-bus model. Several control performances are evaluated to decide a useful method of missing data recovery for the response based one shot control scheme. A PMU data quality issue is not limited to missing samples only but also interference with noises. Later part of this paper performs simulation considering noisy phasor measurements. A 45 dB of Gaussian distributed noise is deliberately added to phasor samples and simulation is performed with different DT indices and thresholds for real time stability prediction and control actuation.  more » « less
Award ID(s):
1711521
PAR ID:
10253590
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE Power & Energy Society General Meeting (PESGM)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The work done in this paper addresses various methods of handling missing phasor samples obtained from power flow simulations using DSA tools like TSAT and PSAT. Pseudorandom numbers in MATLAB are used to simulate 0-10% of missing samples and are recovered using different extrapolation techniques. After recovery, samples are subjected to decision trees to assess the performance of one shot stabilizing controls like in [1], [2].The power system model used is the 176 bus model of Western Electrical Coordinating Council (WECC). 
    more » « less
  2. null (Ed.)
    Electrical disturbances in the power system can threaten stability. One-shot control is an effective method for stabilizing some events. In this paper, predetermined amounts of loads are increased or decreased around the network. Determining the amounts of loads, and the location for shedding is crucial. This paper is completed in two different sections. First, finding the effective control combinations, and second, finding an algorithm for applying different control combinations to different contingencies in real time. The particle swarm optimization (PSO) algorithm is used to find the effective control combinations. Next, decision trees (DT) are trained to assess the benefits of applying each of the three most effective control combinations found by PSO method. The DT outputs are combined into an algorithm for selecting the best control in real time. Finally, the algorithm is evaluated using a test set of contingencies. The results reveal a 46% improvement in comparison to previous studies. 
    more » « less
  3. null (Ed.)
    A data compression system capable of providing real-time streaming of high-resolution continuous point-on-wave (CPOW) and phasor measurement unit (PMU) measurements is proposed. Referred to as adaptive subband compression (ASBC), the proposed technique partitions the signal space into subbands and adaptively compresses subband signals based on each subband's active bandwidth. The proposed technique conforms to existing industry phasor measurement standards, making it suitable for streaming high-resolution CPOW and PMU data either in continuous or burst on-demand/event-triggered modes. Experiments on synthetic and real data show that ASBC reduces the CPOW sampling rates by several orders of magnitude for real-time streaming while maintaining the precision required by industry standards. 
    more » « less
  4. In this study, a machine learning based method is proposed for creating synthetic eventful phasor measurement unit (PMU) data under time-varying load conditions. The proposed method leverages generative adversarial networks to create quasi-steady states for the power system under slowly-varying load conditions and incorporates a framework of neural ordinary differential equations (ODEs) to capture the transient behaviors of the system during voltage oscillation events. A numerical example of a large power grid suggests that this method can create realistic synthetic eventful PMU voltage measurements based on the associated real PMU data without any knowledge of the underlying nonlinear dynamic equations. The results demonstrate that the synthetic voltage measurements have the key characteristics of real system behavior on distinct time scales. 
    more » « less
  5. The paper explores the effects of sensor behavior and communication system (CS) irregularities on power system state estimation (SE). CS are modeled in Network Simulator 2 (NS-2), allowing the quantification of irregularities, including delays and dropped packets. The overall information is obtained combining SCADA measurements with phasor measurement unit (PMU) derived data, where time stamping (based on GPS or an equivalent local clock) for all measurements is assumed. To fully analyze the effects of irregularities, a detailed analysis of sensitivities to different communication system parameters is provided as well. Using the co-simulation environment PiccSIM, a SE with these irregularities is quantified for CS parameter variation, with detailed models of power and communication flows. 
    more » « less