skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of ‘cryptic’ epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.  more » « less
Award ID(s):
2032663
NSF-PAR ID:
10253807
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Chemistry
ISSN:
1755-4330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.

     
    more » « less
  2. Abstract

    The glycosylation on the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, modulates the viral infection by altering conformational dynamics, receptor interaction and host immune responses. Several variants of concern (VOCs) of SARS-CoV-2 have evolved during the pandemic, and crucial mutations on the S protein of the virus have led to increased transmissibility and immune escape. In this study, we compare the site-specific glycosylation and overall glycomic profiles of the wild type Wuhan-Hu-1 strain (WT) S protein and five VOCs of SARS-CoV-2: Alpha, Beta, Gamma, Delta and Omicron. Interestingly, both N- and O-glycosylation sites on the S protein are highly conserved among the spike mutant variants, particularly at the sites on the receptor-binding domain (RBD). The conservation of glycosylation sites is noteworthy, as over 2 million SARS-CoV-2 S protein sequences have been reported with various amino acid mutations. Our detailed profiling of the glycosylation at each of the individual sites of the S protein across the variants revealed intriguing possible association of glycosylation pattern on the variants and their previously reported infectivity. While the sites are conserved, we observed changes in the N- and O-glycosylation profile across the variants. The newly emerged variants, which showed higher resistance to neutralizing antibodies and vaccines, displayed a decrease in the overall abundance of complex-type glycans with both fucosylation and sialylation and an increase in the oligomannose-type glycans across the sites. Among the variants, the glycosylation sites with significant changes in glycan profile were observed at both theN-terminal domain and RBD of S protein, with Omicron showing the highest deviation. The increase in oligomannose-type happens sequentially from Alpha through Delta. Interestingly, Omicron does not contain more oligomannose-type glycans compared to Delta but does contain more compared to the WT and other VOCs. O-glycosylation at the RBD showed lower occupancy in the VOCs in comparison to the WT. Our study on the sites and pattern of glycosylation on the SARS-CoV-2 S proteins across the VOCs may help to understand how the virus evolved to trick the host immune system. Our study also highlights how the SARS-CoV-2 virus has conserved bothN- andO- glycosylation sites on the S protein of the most successful variants even after undergoing extensive mutations, suggesting a correlation between infectivity/ transmissibility and glycosylation.

     
    more » « less
  3. Abstract

    The continued emergence of new SARS‐CoV‐2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high‐affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent‐exposed hACE2‐binding residues of the SARS‐CoV‐2 spike receptor binding domain (RBD) protein using the software toolOptMAVEn‐2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9‐mer library of “human Abs” based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade‐off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced byOptMAVEn‐2.0using a Rosetta‐based approach. We used RosettaSnugDockfor local docking of the designs to evaluate their potential to bind the spike RBD and performed “forward folding” withDeepAbto assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS‐CoV‐2 variants or other antigenic targets.

     
    more » « less
  4. Chaperonins are biological nanomachines that help newly translated proteins to fold by rescuing them from kinetically trapped misfolded states. Protein folding assistance by the chaperonin machinery is obligatory in vivo for a subset of proteins in the bacterial proteome. Chaperonins are large oligomeric complexes, with unusual seven fold symmetry (group I) or eight/nine fold symmetry (group II), that form double-ring constructs, enclosing a central cavity that serves as the folding chamber. Dramatic large-scale conformational changes, that take place during ATP-driven cycles, allow chaperonins to bind misfolded proteins, encapsulate them into the expanded cavity and release them back into the cellular environment, regardless of whether they are folded or not. The theory associated with the iterative annealing mechanism, which incorporated the conformational free energy landscape description of protein folding, quantitatively explains most, if not all, the available data. Misfolded conformations are associated with low energy minima in a rugged energy landscape. Random disruptions of these low energy conformations result in higher free energy, less folded, conformations that can stochastically partition into the native state. Two distinct mechanisms of annealing action have been described. Group I chaperonins (GroEL homologues in eubacteria and endosymbiotic organelles), recognize a large number of misfolded proteins non-specifically and operate through highly coordinated cooperative motions. By contrast, the less well understood group II chaperonins (CCT in Eukarya and thermosome/TF55 in Archaea), assist a selected set of substrate proteins. Sequential conformational changes within a CCT ring are observed, perhaps promoting domain-by-domain substrate folding. Chaperonins are implicated in bacterial infection, autoimmune disease, as well as protein aggregation and degradation diseases. Understanding the chaperonin mechanism and the specific proteins they rescue during the cell cycle is important not only for the fundamental aspect of protein folding in the cellular environment, but also for effective therapeutic strategies. 
    more » « less
  5. Kazarinoff, P. (Ed.)
    Disparities in undergraduate STEM degree completions across the United States are a national concern. Undergraduate-level research opportunities are vital for developing future researchers and building their scientific identity. These experiences can help students in community colleges acquire 21st-century skills and build confidence in their ability to do science [1-3]. The development and implementation of guided research experiences provide users with a topic they are familiar with but not necessarily experts in, like SARS-CoV2 infections. In this particular study, the Immune Epitope Database (IEDB) was used to identify amino acid residues located on the immunogenic regions of the spike glycoprotein of SARS-CoV-2 variants: Alpha, Beta, Gamma, Delta, and Omicron. IEDB is a web-based bioinformatics tool that contains published epitope information and prediction aids that can be used as a research platform for studying infectious diseases. The objective of this study aimed to map the immunogenic regions on the spike glycoproteins of the SARS-CoV-2 variants and predict the immune evasion of these variants [4-6]. Identifying the antigenic determinations that bind to the antibodies is essential for designing future candidates for peptide-based vaccines. This study aims to map the immunogenic regions on the spike glycoproteins of the SARS-CoV-2 variants and predict the immune evasion of these variants [4-6]. Identifying the antigenic determinations that bind to the antibodies is essential for designing future candidates for peptide-based vaccines. This research identifies regions where mutations have occurred in the virus, which are important to study as they can affect the virus’s immune evasion and impact available vaccines. Targeting multiple immunogenic regions unaffected by mutations can serve as potential targets for new vaccines, providing better protection against different variants. 
    more » « less