skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The limits of distribution-free conditional predictive inference
Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.  more » « less
Award ID(s):
1654076
PAR ID:
10253824
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
10
Issue:
2
ISSN:
2049-8764
Page Range / eLocation ID:
455 to 482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data are confounded. Under the marginal sensitivity model of [Z. Tan, J. Am. Stat. Assoc. 101, 1619-1637 (2006)], we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the methods via simulation studies and apply them to analyze real datasets. 
    more » « less
  2. We develop fast distribution-free conformal prediction algorithms for obtaining multivalid coverage on exchangeable data in the batch setting. Multivalid coverage guarantees are stronger than marginal coverage guarantees in two ways: (1) They hold even conditional on group membership---that is, the target coverage level holds conditionally on membership in each of an arbitrary (potentially intersecting) group in a finite collection of regions in the feature space. (2) They hold even conditional on the value of the threshold used to produce the prediction set on a given example. In fact multivalid coverage guarantees hold even when conditioning on group membership and threshold value simultaneously. We give two algorithms: both take as input an arbitrary non-conformity score and an arbitrary collection of possibly intersecting groups , and then can equip arbitrary black-box predictors with prediction sets. Our first algorithm is a direct extension of quantile regression, needs to solve only a single convex minimization problem, and produces an estimator which has group-conditional guarantees for each group in . Our second algorithm is iterative, and gives the full guarantees of multivalid conformal prediction: prediction sets that are valid conditionally both on group membership and non-conformity threshold. We evaluate the performance of both of our algorithms in an extensive set of experiments. 
    more » « less
  3. Summary This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds for survival times with censored data. We build on recent work by Candès et al. (2023), whose approach first subsets the data to discard any data points with early censoring times and then uses a reweighting technique, namely, weighted conformal inference (Tibshirani et al., 2019), to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to lower predictive bounds that are less conservative and give more accurate information. We show that in the Type-I right-censoring setting, if either the censoring mechanism or the conditional quantile of the survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate lower predictive bounds for users’ active times on a mobile app. 
    more » « less
  4. Existing algorithms for online conformal prediction -- guaranteeing marginal coverage in adversarial settings -- are variants of online gradient descent (OGD), but their analyses of worst-case coverage do not follow from the regret guarantee of OGD. What is the relationship between no-regret learning and online conformal prediction? We observe that although standard regret guarantees imply marginal coverage in i.i.d. settings, this connection fails as soon as we either move to adversarial environments or ask for group conditional coverage. On the other hand, we show a tight connection between threshold calibrated coverage and swap-regret in adversarial settings, which extends to group-conditional (multi-valid) coverage. We also show that algorithms in the follow the perturbed leader family of no regret learning algorithms (which includes online gradient descent) can be used to give group-conditional coverage guarantees in adversarial settings for arbitrary grouping functions. Via this connection we analyze and conduct experiments using a multi-group generalization of the ACI algorithm of Gibbs & Candes [2021] 
    more » « less
  5. Michael Mahoney (Ed.)
    This paper develops conformal inference methods to construct a confidence interval for the frequency of a queried object in a very large discrete data set, based on a sketch with a lower memory footprint. This approach requires no knowledge of the data distribution and can be combined with any sketching algorithm, including but not limited to the renowned count-min sketch, the count-sketch, and variations thereof. After explaining how to achieve marginal coverage for exchangeable random queries, we extend our solution to provide stronger inferences that can account for the discreteness of the data and for heterogeneous query frequencies, increasing also robustness to possible distribution shifts. These results are facilitated by a novel conformal calibration technique that guarantees valid coverage for a large fraction of distinct random queries. Finally, we show our methods have improved empirical performance compared to existing frequentist and Bayesian alternatives in simulations as well as in examples of text and SARS-CoV-2 DNA data. 
    more » « less