Abstract Purpose of ReviewArtificial intelligence (AI) is disrupting science and discovery across disciplines, offering new modes of inquiry that are changing how questions are asked and answered and upsetting established norms. In this paper, we review the state of the art of AI in landscape ecology and offer six areas of opportunity for landscape ecologists to capitalize on AI tools moving forward. These areas include geospatial AI (GeoAI), geometric AI, Explainable AI (xAI), generative AI (GenAI), Natural Language Processing (NLP), and robotics. Recent FindingsLandscape ecology has a long history of using AI, notably machine learning methods for image classification tasks, agent-based modeling, and species distribution modeling but also knowledge representation and automated reasoning for landscape generation and spatial planning. Methods have become more diverse and complex in recent years, with a new generation of AI-based tools rapidly emerging. These new tools have potential to improve how landscape ecologists map, measure, and model landscape patterns and processes as well as improve the explainability of model outputs. SummaryThere are many untapped opportunities for landscape ecologists to leverage emerging AI-based tools in research and practice including generating virtual landscapes for simulating processes such as wildfires and leveraging natural language processing to generate new insights from text data. Regardless of the application, researchers using AI tools must also consider the ethical implications of data and algorithmic biases and critically assess how these methods can be used responsibly.
more »
« less
Towards Knowledge Acquisition of Metadata on AI Progress
We propose an ontology to help AI researchers keep track of the scholarly progress of AI related tasks such as natural language processing and computer vision. We first define the core entities and relations in the proposed Machine Learning Progress Ontology (MLPO). Then we describe how to use the techniques in natural language processing to construct a Machine Learning Progress Knowledge Base (MPKB) that can support various downstream tasks.
more »
« less
- Award ID(s):
- 1816325
- PAR ID:
- 10254052
- Editor(s):
- Taylor, Kerry; Gonçalves, Rafael; Lecue, Freddy; Yan, Jun
- Date Published:
- Journal Name:
- CEUR workshop proceedings
- Volume:
- 2721
- ISSN:
- 1613-0073
- Page Range / eLocation ID:
- 232-237
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dialog systems (e.g., chatbots) have been widely studied, yet related research that leverages artificial intelligence (AI) and natural language processing (NLP) is constantly evolving. These systems have typically been developed to interact with humans in the form of speech, visual, or text conversation. As humans continue to adopt dialog systems for various objectives, there is a need to involve humans in every facet of the dialog development life cycle for synergistic augmentation of both the humans and the dialog system actors in real-world settings. We provide a holistic literature survey on the recent advancements inhuman-centered dialog systems(HCDS). Specifically, we provide background context surrounding the recent advancements in machine learning-based dialog systems and human-centered AI. We then bridge the gap between the two AI sub-fields and organize the research works on HCDS under three major categories (i.e., Human-Chatbot Collaboration, Human-Chatbot Alignment, Human-Centered Chatbot Design & Governance). In addition, we discuss the applicability and accessibility of the HCDS implementations through benchmark datasets, application scenarios, and downstream NLP tasks.more » « less
-
In graph machine learning, data collection, sharing, and analysis often involve multiple parties, each of which may require varying levels of data security and privacy. To this end, preserving privacy is of great importance in protecting sensitive information. In the era of big data, the relationships among data entities have become unprecedentedly complex, and more applications utilize advanced data structures (i.e., graphs) that can support network structures and relevant attribute information. To date, many graph-based AI models have been proposed (e.g., graph neural networks) for various domain tasks, like computer vision and natural language processing. In this paper, we focus on reviewing privacypreserving techniques of graph machine learning. We systematically review related works from the data to the computational aspects. We rst review methods for generating privacy-preserving graph data. Then we describe methods for transmitting privacy-preserved information (e.g., graph model parameters) to realize the optimization-based computation when data sharing among multiple parties is risky or impossible. In addition to discussing relevant theoretical methodology and software tools, we also discuss current challenges and highlight several possible future research opportunities for privacy-preserving graph machine learning. Finally, we envision a uni ed and comprehensive secure graph machine learning system.more » « less
-
Large pretrained transformer models have revolutionized modern AI applications with their state-of-the-art performance in natural language processing (NLP). However, their substantial parameter count poses challenges for real-world deployment. To address this, researchers often reduce model size by pruning parameters based on their magnitude or sensitivity. Previous research has demonstrated the limitations of magnitude pruning, especially in the context of transfer learning for modern NLP tasks. In this paper, we introduce a new magnitude-based pruning algorithm called mixture Gaussian prior pruning (MGPP), which employs a mixture Gaussian prior for regularization. MGPP prunes non-expressive weights under the guidance of the mixture Gaussian prior, aiming to retain the model’s expressive capability. Extensive evaluations across various NLP tasks, including natural language understanding, question answering, and natural language generation, demonstrate the superiority of MGPP over existing pruning methods, particularly in high sparsity settings. Additionally, we provide a theoretical justification for the consistency of the sparse transformer, shedding light on the effectiveness of the proposed pruning method.more » « less
-
Adversarial machine learning (AML) research is concerned with robustness of machine learning models and algorithms to malicious tampering. Originating at the intersection between machine learning and cybersecurity, AML has come to have broader research appeal, stretching traditional notions of security to include applications of computer vision, natural language processing, and network science. In addition, the problems of strategic classification, algorithmic recourse, and counterfactual explanations have essentially the same core mathematical structure as AML, despite distinct motivations. I give a simplified overview of the central problems in AML, and then discuss both the security-motivated AML domains, and the problems above unrelated to security. These together span a number of important AI subdisciplines, but can all broadly be viewed as concerned with trustworthy AI. My goal is to clarify both the technical connections among these, as well as the substantive differences, suggesting directions for future research.more » « less
An official website of the United States government

