skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Residual-based a posteriori error estimates of mixed methods for a three-field Biot’s consolidation model
Abstract We present residual-based a posteriori error estimates of mixed finite element methods for the three-field formulation of Biot’s consolidation model. The error estimator are upper and lower bounds of the space-time discretization error up to data oscillation. As a by-product, we also obtain a new a posteriori error estimate of mixed finite element methods for the heat equation.  more » « less
Award ID(s):
1819157 1720114
PAR ID:
10255452
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz-type decomposition and an interface-adapted Scott-Zhang type interpolation operator. A local efficiency and the reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using our estimator are included. 
    more » « less
  2. Abstract We derive a residual-based a posteriori error estimator for the conforming hp -Adaptive Finite Element Method ( hp -AFEM) for the steady state Stokes problem describing the slow motion of an incompressible fluid. This error estimator is obtained by extending the idea of a posteriori error estimation for the classical h -version of AFEM. We also establish the reliability and efficiency of the error estimator. The proofs are based on the well-known Clément-type interpolation operator introduced in [28] in the context of the hp -AFEM. Numerical experiments show the performance of an adaptive hp-FEM algorithm using the proposed a posteriori error estimator. 
    more » « less
  3. Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method. 
    more » « less
  4. A nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results, where the discrete nonsmooth and nonlinear optimization problems are solved by an active set method and an alternating direction method with multipliers. 
    more » « less
  5. We design and analyze a C0 interior penalty method for the approximation of classical solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on convex polygonal domains. The method is based on an enhanced cubic Lagrange finite element that enables the enforcement of the convexity of the approximate solutions. Numerical results that corroborate the a priori and a posteriori error estimates are presented. It is also observed from numerical experiments that this method can capture certain weak solutions. 
    more » « less