skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Online MAP Inference of Determinantal Point Processes
In this paper, we provide an efficient approximation algorithm for finding the most likelihood configuration (MAP) of size k for Determinantal Point Processes (DPP) in the online setting where the data points arrive in an arbitrary order and the algorithm cannot discard the selected elements from its local memory. Given a tolerance additive error eta, our online algorithm achieves a k^O(k) multiplicative approximation guarantee along with an additive error eta, using a memory footprint independent of the size of the data stream. We note that the exponential dependence on k in the approximation factor is unavoidable even in the offline setting. Our result readily implies a streaming algorithm with an improved memory bound compared to existing results.  more » « less
Award ID(s):
2008688
PAR ID:
10255474
Author(s) / Creator(s):
; ; ;
Editor(s):
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.F.; Lin, H.
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor. 
    more » « less
  2. Evans, Robin; Shpitser, Ilya (Ed.)
    We consider the problem of maximizing submodular functions under submodular constraints by formulating the problem in two ways: \SCSKC and \DiffC. Given two submodular functions $$f$$ and $$g$$ where $$f$$ is monotone, the objective of \SCSKC problem is to find a set $$S$$ of size at most $$k$$ that maximizes $f(S)$ under the constraint that $$g(S)\leq \theta$$, for a given value of $$\theta$$. The problem of \DiffC focuses on finding a set $$S$$ of size at most $$k$$ such that $h(S) = f(S)-g(S)$$ is maximized. It is known that these problems are highly inapproximable and do not admit any constant factor multiplicative approximation algorithms unless NP is easy. Known approximation algorithms involve data-dependent approximation factors that are not efficiently computable. We initiate a study of the design of approximation algorithms where the approximation factors are efficiently computable. For the problem of \SCSKC, we prove that the greedy algorithm produces a solution whose value is at least $$(1-1/e)f(\OPT) - A$, where $$A$$ is the data-dependent additive error. For the \DiffC problem, we design an algorithm that uses the \SCSKC greedy algorithm as a subroutine. This algorithm produces a solution whose value is at least $$(1-1/e)h(\OPT)-B$, where $$B$$ is also a data-dependent additive error. A salient feature of our approach is that the additive error terms can be computed efficiently, thus enabling us to ascertain the quality of the solutions produced. 
    more » « less
  3. This paper studies the problem of clustering in metric spaces while preserving the privacy of individual data. Specifically, we examine differentially private variants of the k-medians and Euclidean k-means problems. We present polynomial algorithms with constant multiplicative error and lower additive error than the previous state-of-the-art for each problem. Additionally, our algorithms use a clustering algorithm without differential privacy as a black-box. This allows practitioners to control the trade-off between runtime and approximation factor by choosing a suitable clustering algorithm to use. 
    more » « less
  4. We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $$O(k / \varepsilon^2)$$ memory, where $$k$$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $$\frac{\alpha}{1+\alpha}-\varepsilon$$, where $$\alpha$$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $$\frac{1}{2}-\varepsilon$$ approximation (which is nearly optimal). If we post-process with the algorithm of \cite{buchbinder2019constrained}, that achieves the state-of-the-art offline approximation guarantee of $$\alpha=0.385$$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$$ due to \cite{feldman2018less}. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $$O(\frac{\log k + \log (1/\alpha {\varepsilon^2})$ per element. 
    more » « less
  5. Megow, Nicole; Smith, Adam (Ed.)
    In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+Ξ΅)𝓁 for any constant Ξ΅ > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online. 
    more » « less