skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1804326

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electrochemical CO2reduction offers a compelling route to mitigate atmospheric CO2concentration and store intermittent renewable energy in chemical bonds. Beyond C1, C2+feedstocks are more desirable due to their higher energy density and more significant market need. However, the CO2‐to‐C2+reduction suffers from significant barriers of CC coupling and complex reaction pathways. Due to remarkable tunability over morphology/pore architecture along with great feasibility of functionalization to modify the electronic and geometric structures, carbon materials, serving as active components, supports, and promoters, provide exciting opportunities to tune both the adsorption properties of intermediates and the local reaction environment for the CO2reduction, offering effective solutions to enable CC coupling and steer C2+evolution. However, general design principles remain ambiguous, causing an impediment to rational catalyst refinement and application thrusts. This review clarifies insightful design principles for advancing carbon materials. First, the current performance status and challenges are discussed and effective strategies are outlined to promote C2+evolution. Further, the correlation between the composition, structure, and morphology of carbon catalysts and their catalytic behavior is elucidated to establish catalytic mechanisms and critical factors determining C2+performance. Finally, future research directions and strategies are envisioned to inspire revolutionary advancements.

     
    more » « less
  2. Abstract

    Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.

     
    more » « less
  3. Abstract

    We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

     
    more » « less
  4. Abstract

    Atomically dispersed and nitrogen coordinated single metal sites (M‐N‐C, M=Fe, Co, Ni, Mn) are the popular platinum group‐metal (PGM)‐free catalysts for many electrochemical reactions. Traditional wet‐chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M‐N‐C catalysts. The deposition of gaseous 2‐methylimidazole onto M‐doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD‐derived Fe‐N‐C catalyst exclusively contains atomically dispersed FeN4sites with increased Fe loading relative to other catalysts from wet‐chemistry synthesis. The catalyst exhibited outstanding oxygen‐reduction activity in acidic electrolytes, which was further studied in proton‐exchange membrane fuel cells with encouraging performance.

     
    more » « less
  5. Abstract

    Clean and efficient energy storage and conversion via sustainable water and nitrogen reactions have attracted substantial attention to address the energy and environmental issues due to the overwhelming use of fossil fuels. These electrochemical reactions are crucial for desirable clean energy technologies, including advanced water electrolyzers, hydrogen fuel cells, and ammonia electrosynthesis and utilization. Their sluggish reaction kinetics lead to inefficient energy conversion. Innovative electrocatalysis, i.e., catalysis at the interface between the electrode and electrolyte to facilitate charge transfer and mass transport, plays a vital role in boosting energy conversion efficiency and providing sufficient performance and durability for these energy technologies. Herein, a comprehensive review on recent progress, achievements, and remaining challenges for these electrocatalysis processes related to water (i.e., oxygen evolution reaction, OER, and oxygen reduction reaction, ORR) and nitrogen (i.e., nitrogen reduction reaction, NRR, for ammonia synthesis and ammonia oxidation reaction, AOR, for energy utilization) is provided. Catalysts, electrolytes, and interfaces between the two within electrodes for these electrocatalysis processes are discussed. The primary emphasis is device performance of OER‐related proton exchange membrane (PEM) electrolyzers, ORR‐related PEM fuel cells, NRR‐driven ammonia electrosynthesis from water and nitrogen, and AOR‐related direct ammonia fuel cells.

     
    more » « less
  6. Abstract

    Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.

     
    more » « less
  7. Abstract

    Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability.

     
    more » « less
  8. Abstract

    Sn‐based materials are identified as promising catalysts for the CO2electroreduction (CO2RR) to formate (HCOO). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO2nanosheet with simultaneous N dopants and oxygen vacancies (VO‐rich N‐SnO2NS) for promoting CO2conversion to HCOOis reported. Due to the likely synergistic effect of N dopant andVO, theVO‐rich N‐SnO2NS exhibits high catalytic selectivity featured by an HCOOFaradaic efficiency (FE) of 83% at0.9 V and an FE of>90% for all C1 products (HCOOand CO) at a wide potential range from −0.9 to1.2 V. Low coordination Sn–N moieties are the active sites with optimal electronic and geometric structures regulated byVOand N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on theVO‐rich N‐SnO2NS, thus enhancing HCOOselectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn‐CO2cell and a solar‐powered electrolysis process successfully demonstrated the efficient HCOOgeneration through CO2conversion and storage.

     
    more » « less
  9. Abstract

    FeN4moieties embedded in partially graphitized carbon are the most efficient platinum group metal free active sites for the oxygen reduction reaction in acidic proton‐exchange membrane fuel cells. However, their formation mechanisms have remained elusive for decades because the Fe−N bond formation process always convolutes with uncontrolled carbonization and nitrogen doping during high‐temperature treatment. Here, we elucidate the FeN4site formation mechanisms through hosting Fe ions into a nitrogen‐doped carbon followed by a controlled thermal activation. Among the studied hosts, the ZIF‐8‐derived nitrogen‐doped carbon is an ideal model with well‐defined nitrogen doping and porosity. This approach is able to deconvolute Fe−N bond formation from complex carbonization and nitrogen doping, which correlates Fe−N bond properties with the activity and stability of FeN4sites as a function of the thermal activation temperature.

     
    more » « less