skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Superbases in Recent Synthetic Methodology Research
Abstract Organic superbases are a distinct and increasingly utilized class of Brønsted base that possess properties complementary to common inorganic bases. This Concept article discusses recent applications of commercial organic superbases in modern synthetic methodologies. Examples of the advantages of organic superbases in three areas are highlighted, including the discovery of new base‐catalyzed reactions, the optimization of reactions that require stoichiometric Brønsted base, and in high‐throughput experimentation technology.  more » « less
Award ID(s):
1944478
PAR ID:
10255852
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
13
ISSN:
0947-6539
Format(s):
Medium: X Size: p. 4216-4229
Size(s):
p. 4216-4229
Sponsoring Org:
National Science Foundation
More Like this
  1. Organic superbases are a distinct class of strong base that enable numerous modern reaction applications. Despite their great synthetic potential, widespread use and study of superbases are limited by their air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P2-t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for control over a reaction's rate or induction period and improvement of reactions that require strong base but are also sensitive to its presence, such as Pd-catalyzed coupling reactions. 
    more » « less
  2. Abstract A simple experimental procedure for scaling carbene Brønsted basicity is described. The results highlight the strong basicity of pyrazol‐4‐ylidenes, a type of mesoionic carbene, also named cyclic‐bentallenes (CBA). They are more basic (pKaH>42.7 in acetonitrile) than the popular proazaphosphatrane Verkade bases, and even the Schwesinger phosphazene superbase P4(tBu). The basicity of these compounds can readily be tuned, and they are accessible in multigram quantities. These results open new avenues for carbon centered superbases. 
    more » « less
  3. Abstract Visible‐light photocatalysis has advanced as a versatile tool in organic synthesis. However, attaining precise stereocontrol in photocatalytic reactions has been a longstanding challenge due to undesired photochemical background reactions and the involvement of highly reactive radicals or radical ion intermediates generated under photocatalytic conditions. To address this problem and expand the synthetic utility of photocatalytic reactions, a number of innovative strategies, including mono‐ and dual‐catalytic approaches, have recently emerged. Of these, exploiting chiral organocatalysis, such as enamine catalysis, iminium‐ion catalysis, Brønsted acid/base catalysis, andN‐heterocyclic carbene catalysis, to induce chirality transfer of photocatalytic reactions has been widely explored. This Review aims to provide a current, comprehensive overview of asymmetric photocatalytic reactions enabled by chiral organocatalysts published through June 2021. The substrate scope, advantages, limitations, and proposed reaction mechanisms of each reaction are discussed. This review should serve as a reference for the development of visible‐light‐induced asymmetric photocatalysis and promote the improvement of the chemical reactivity and stereoselectivity of these reactions. 
    more » « less
  4. The Brønsted–Lowry acid–base model is fundamental when discussing acid and base strength in organic chemistry as many of the reactions include a competing proton transfer reaction. This model requires evaluating chemical stability via a consideration of electronic granularity. The purpose of this study is to identify students’ mental models on acid and base strength in terms of granularity and stability. Fourteen students enrolled in organic chemistry participated in this case study. Data were collected through semi-structured interviews including total case comparison tasks on stability, acidity, and basicity. Analysis of data revealed that there were four groups of students differentiated by their reasoning: (1) acid and base strength through structure without association to stability, (2) acid and base strength through electronics without association to stability, (3) acid strength associated with electronically centered stability, and (4) acid and base strength associated with electronically centered stability. This characterization can support teaching and research to promote reasoning that leads to a more consistent mental model across acid and base strength. 
    more » « less
  5. Arynes hold immense potential as reactive intermediates in organic synthesis as they engage in a diverse range of mechanistically distinct chemical reactions. However, the poor functional group compatibility of generating arynes or their precursors has stymied their widespread use. Here, we show that generating arynes by deprotonation of an arene and elimination of an “onium” leaving group is mild, efficient and broad in scope. This is achieved by using aryl(TMP)iodonium salts (TMP = 2,4,6-trimethoxyphenyl) as the aryne precursor and potassium phosphate as the base, and a range of arynophiles are compatible. Additionally, we have performed the first quantitative analysis of functional group compatibility for several methods to generate arynes, including the method developed here and the current state of the art. Finally, we show that a range of “sensitive” functional groups such as Lewis and Brønsted acids and electrophiles are compatible under our conditions. 
    more » « less