skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation
Background Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). Results The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k -mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k -mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. Conclusion Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses ‘hidden’ in diverse sequence datasets.  more » « less
Award ID(s):
1829831 1759874
PAR ID:
10256499
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
9
ISSN:
2167-8359
Page Range / eLocation ID:
e11447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is disproportionately warming northern peatlands, which may release large carbon stores via increased microbial activity. While there are many unknowns about such microbial responses, virus roles are especially poorly characterized with studies to date largely restricted to “bycatch” from bulk metagenomes. Here, we used optimized viral particle purification techniques on 20 samples along a highly contextualized peatland permafrost thaw gradient, extracted and sequenced viral particle DNA using two library kits to capture single-stranded (ssDNA) and double-stranded (dsDNA) virus genomes (40 total viromes), and explored their diversity and potential ecosystem impacts. Both kits recovered similar dsDNA virus numbers, but only one also captured thousands of ssDNA viruses. Combining these data, we explored population-level ecology using genomic representation from 9,560 viral operational taxonomic units (vOTUs); nearly a 4-fold expansion from permafrost-associated soils, and 97% of which were novel when compared against large datasets from soils, oceans, and the human gut.In silicopredictions identified putative hosts for 44% (4,149 dsDNA + 17 ssDNA) of the identified vOTUs spanning 2 eukaryotic, 12 archaeal, and 30 bacterial phyla. The recovered vOTUs encoded 1,684 putative auxiliary metabolic genes (AMGs) and other metabolic genes carried by ∼10% of detected vOTUs, of which 46% were related to carbon processing and 644 were novel. These AMGs grouped into five functional categories and 11 subcategories, and nearly half (47%) of the AMGs were involved in carbon utilization. Of these, 112 vOTUs encoded 123 glycoside hydrolases spanning 15 types involved in the degradation of polysaccharides (e.g., cellulose) to monosaccharides (e.g., galactose), or further monosaccharide degradation, which suggests virus involvement in myriad metabolisms including fermentation and central carbon metabolism. These findings expand the scope of viral roles in microbial carbon processing and suggest viruses may be critical for understanding the fate of soil organic carbon in peatlands. 
    more » « less
  2. Cristea, Ileana M (Ed.)
    ABSTRACT: Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral identification tools. However, the effectiveness of this strategy is unknown. Here, we benchmarked combinations of six widely used informatics tools for viral identification and analysis (VirSorter, VirSorter2, VIBRANT, DeepVirFinder, CheckV, and Kaiju), called “rulesets.” Rulesets were tested against mock metagenomes composed of taxonomically diverse sequence types and diverse aquatic metagenomes to assess the effects of the degree of viral enrichment and habitat on tool performance. We found that six rulesets achieved equivalent accuracy [Matthews Correlation Coefficient (MCC) = 0.77, Padj ≥ 0.05]. Each contained VirSorter2, and five used our “tuning removal” rule designed to remove non-viral contamination. While DeepVirFinder, VIBRANT, and VirSorter were each found once in these high-accuracy rulesets, they were not found in combination with each other: combining tools does not lead to optimal performance. Our validation suggests that the MCC plateau at 0.77 is partly caused by inaccurate labeling within reference sequence databases. In aquatic metagenomes, our highest MCC ruleset identified more viral sequences in virus-enriched (44%–46%) than in cellular metagenomes (7%–19%). While improved algorithms may lead to more accurate viral identification tools, this should be done in tandem with careful curation of sequence databases. We recommend using the VirSorter2 ruleset and our empirically derived tuning removal rule. Our analysis provides insight into methods for in silico viral identification and will enable more robust viral identification from metagenomic data sets. IMPORTANCE: The identification of viruses from environmental metagenomes using informatics tools has offered critical insights in microbial ecology. However, it remains difficult for researchers to know which tools optimize viral recovery for their specific study. In an attempt to recover more viruses, studies are increasingly combining the outputs from multiple tools without validating this approach. After benchmarking combinations of six viral identification tools against mock metagenomes and environmental samples, we found that these tools should only be combined cautiously. Two to four tool combinations maximized viral recovery and minimized non-viral contamination compared with either the single-tool or the five- to six-tool ones. By providing a rigorous overview of the behavior of in silico viral identification strategies and a pipeline to replicate our process, our findings guide the use of existing viral identification tools and offer a blueprint for feature engineering of new tools that will lead to higher-confidence viral discovery in microbiome studies. 
    more » « less
  3. Viruses play crucial roles in the ecology of microbial communities, yet they remain relatively understudied in their native environments. Despite many advancements in high-throughput whole-genome sequencing (WGS), sequence assembly, and annotation of viruses, the reconstruction of full-length viral genomes directly from metagenomic sequencing is possible only for the most abundant phages and requires long-read sequencing technologies. Additionally, the prediction of their cellular hosts remains difficult from conventional metagenomic sequencing alone. To address these gaps in the field and to accelerate the study of viruses directly in their native microbiomes, we developed an end-to-end bioinformatics platform for viral genome reconstruction and host attribution from metagenomic data using proximity-ligation sequencing (i.e., Hi-C). We demonstrate the capabilities of the platform by recovering and characterizing the metavirome of a variety of metagenomes, including a fecal microbiome that has also been sequenced with accurate long reads, allowing for the assessment and benchmarking of the new methods. The platform can accurately extract numerous near-complete viral genomes even from highly fragmented short-read assemblies and can reliably predict their cellular hosts with minimal false positives. To our knowledge, this is the first software for performing these tasks. Being significantly cheaper than long-read sequencing of comparable depth, the incorporation of proximity-ligation sequencing in microbiome research shows promise to greatly accelerate future advancements in the field. 
    more » « less
  4. Abstract Lichen thalli are formed through the symbiotic association of a filamentous fungus and photosynthetic green alga and/or cyanobacterium. Recent studies have revealed lichens also host highly diverse communities of secondary fungal and bacterial symbionts, yet few studies have examined the viral component within these complex symbioses. Here, we describe viral biodiversity and functions in cyanolichens collected from across North America and Europe. As current machine-learning viral-detection tools are not trained on complex eukaryotic metagenomes, we first developed efficient methods to remove eukaryotic reads prior to viral detection and a custom pipeline to validate viral contigs predicted with three machine-learning methods. Our resulting high-quality viral data illustrate that every cyanolichen thallus contains diverse viruses that are distinct from viruses in other terrestrial ecosystems. In addition to cyanobacteria, predicted viral hosts include other lichen-associated bacterial lineages and algae, although a large fraction of viral contigs had no host prediction. Functional annotation of cyanolichen viral sequences predicts numerous viral-encoded auxiliary metabolic genes (AMGs) involved in amino acid, nucleotide, and carbohydrate metabolism, including AMGs for secondary metabolism (antibiotics and antimicrobials) and fatty acid biosynthesis. Overall, the diversity of cyanolichen AMGs suggests that viruses may alter microbial interactions within these complex symbiotic assemblages. 
    more » « less
  5. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Reconstructing microbial genomes from metagenomic short-read data can be challenging due to the unknown and uneven complexity of microbial communities. This complexity encompasses highly diverse populations, which often includes strain variants. Reconstructing high-quality genomes is a crucial part of the metagenomic workflow, as subsequent ecological and metabolic inferences depend on their accuracy, quality, and completeness. In contrast to microbial communities in other ecosystems, there has been no systematic assessment of genome-centric metagenomic workflows for drinking water microbiomes. In this study, we assessed the performance of a combination of assembly and binning strategies for time series drinking water metagenomes that were collected over 6 months. The goal of this study was to identify the combination of assembly and binning approaches that result in high-quality and -quantity metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our findings suggest that the metaSPAdes coassembly strategies had the best performance, as they resulted in larger and less fragmented assemblies, with at least 85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a combination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 70% of the metagenomes based on read recruitment. Utilizing different assembly/binning approaches also assists in the reconstruction of unique MAGs from closely related species that would have otherwise collapsed into a single MAG using a single workflow. Overall, our study suggests that leveraging multiple binning approaches with different metaSPAdes coassembly strategies may be required to maximize the recovery of good-quality MAGs. IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea, and eukarya that affect the esthetic quality of water, water infrastructure, and public health. Taxonomic, metabolic, and ecological inferences of the drinking water microbiome depend on the accuracy, quality, and completeness of genomes that are reconstructed through the application of genome-resolved metagenomics. Using time series metagenomic data, we present reproducible genome-centric metagenomic workflows that result in high-quality and -quantity genomes, which more accurately signifies the sequenced drinking water microbiome. These genome-centric metagenomic workflows will allow for improved taxonomic and functional potential analysis that offers enhanced insights into the stability and dynamics of drinking water microbial communities. 
    more » « less