skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Benchmarking informatics approaches for virus discovery: caution is needed when combining in silico identification methods
ABSTRACT: Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral identification tools. However, the effectiveness of this strategy is unknown. Here, we benchmarked combinations of six widely used informatics tools for viral identification and analysis (VirSorter, VirSorter2, VIBRANT, DeepVirFinder, CheckV, and Kaiju), called “rulesets.” Rulesets were tested against mock metagenomes composed of taxonomically diverse sequence types and diverse aquatic metagenomes to assess the effects of the degree of viral enrichment and habitat on tool performance. We found that six rulesets achieved equivalent accuracy [Matthews Correlation Coefficient (MCC) = 0.77, Padj ≥ 0.05]. Each contained VirSorter2, and five used our “tuning removal” rule designed to remove non-viral contamination. While DeepVirFinder, VIBRANT, and VirSorter were each found once in these high-accuracy rulesets, they were not found in combination with each other: combining tools does not lead to optimal performance. Our validation suggests that the MCC plateau at 0.77 is partly caused by inaccurate labeling within reference sequence databases. In aquatic metagenomes, our highest MCC ruleset identified more viral sequences in virus-enriched (44%–46%) than in cellular metagenomes (7%–19%). While improved algorithms may lead to more accurate viral identification tools, this should be done in tandem with careful curation of sequence databases. We recommend using the VirSorter2 ruleset and our empirically derived tuning removal rule. Our analysis provides insight into methods for in silico viral identification and will enable more robust viral identification from metagenomic data sets. IMPORTANCE: The identification of viruses from environmental metagenomes using informatics tools has offered critical insights in microbial ecology. However, it remains difficult for researchers to know which tools optimize viral recovery for their specific study. In an attempt to recover more viruses, studies are increasingly combining the outputs from multiple tools without validating this approach. After benchmarking combinations of six viral identification tools against mock metagenomes and environmental samples, we found that these tools should only be combined cautiously. Two to four tool combinations maximized viral recovery and minimized non-viral contamination compared with either the single-tool or the five- to six-tool ones. By providing a rigorous overview of the behavior of in silico viral identification strategies and a pipeline to replicate our process, our findings guide the use of existing viral identification tools and offer a blueprint for feature engineering of new tools that will lead to higher-confidence viral discovery in microbiome studies.  more » « less
Award ID(s):
2055455
PAR ID:
10515461
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Cristea, Ileana M
Publisher / Repository:
ASM Journals
Date Published:
Journal Name:
mSystems
Volume:
9
Issue:
3
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). Results The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k -mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k -mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. Conclusion Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses ‘hidden’ in diverse sequence datasets. 
    more » « less
  2. Abstract BackgroundViruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. ResultsHere, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes had greater species richness and total viral genome abundances than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. ConclusionsOverall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits. 
    more » « less
  3. Metagenomics has enabled sequencing of viral communities from a myriad of different environments. Viral metagenomic studies routinely uncover sequences with no recognizable homology to known coding regions or genomes. Nevertheless, complete viral genomes have been constructed directly from complex community metagenomes, often through tedious manual curation. To address this, we developed the software tool virMine to identify viral genomes from raw reads representative of viral or mixed (viral and bacterial) communities. virMine automates sequence read quality control, assembly, and annotation. Researchers can easily refine their search for a specific study system and/or feature(s) of interest. In contrast to other viral genome detection tools that often rely on the recognition of viral signature sequences, virMine is not restricted by the insufficient representation of viral diversity in public data repositories. Rather, viral genomes are identified through an iterative approach, first omitting non-viral sequences. Thus, both relatives of previously characterized viruses and novel species can be detected, including both eukaryotic viruses and bacteriophages. Here we present virMine and its analysis of synthetic communities as well as metagenomic data sets from three distinctly different environments: the gut microbiota, the urinary microbiota, and freshwater viromes. Several new viral genomes were identified and annotated, thus contributing to our understanding of viral genetic diversity in these three environments. 
    more » « less
  4. null (Ed.)
    Abstract Background Viruses are a significant player in many biosphere and human ecosystems, but most signals remain “hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. Results Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales ). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. Conclusion With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ). 
    more » « less
  5. Abstract Sequence classification facilitates a fundamental understanding of the structure of microbial communities. Binary metagenomic sequence classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig classification than other state-of-the-art predictors. DeepMicroClass achieved comparable performance on viral sequence classification with geNomad and VirSorter2 when benchmarked on the CAMI II marine dataset. Using a coastal daily time-series metagenomic dataset as a case study, we showed that microbial eukaryotes and prokaryotic viruses are integral to microbial communities. By analyzing monthly metagenomes collected at HOT and BATS, we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal viral infection patterns prevalent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence types. 
    more » « less