We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle.
more »
« less
A Systematic Review of Virtual Reality Interfaces for Controlling and Interacting with Robots
There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using VR devices in the field of robotics, especially in the development of VR interfaces for operating robots. In this paper, we present a systematic review on VR interfaces for robot operation that utilize commercially available immersive VR devices. A total of 41 papers published between 2016–2020 were collected for review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Papers are discussed and categorized into five categories: (1) Visualization, which focuses on displaying data or information to operators; (2) Robot Control and Planning, which focuses on connecting human input or movement to robot movement; (3) Interaction, which focuses on the development of new interaction techniques and/or identifying best interaction practices; (4) Usability, which focuses on user experiences of VR interfaces; and (5) Infrastructure, which focuses on system architectures or software to support connecting VR and robots for interface development. Additionally, we provide future directions to continue development in VR interfaces for operating robots.
more »
« less
- Award ID(s):
- 1944453
- PAR ID:
- 10256878
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 10
- Issue:
- 24
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 9051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.more » « less
-
null (Ed.)Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.more » « less
-
Articulated robots are attracting the attention of artists worldwide. Due to their precise, tireless, and efficient nature, robots are now being deployed in different forms of creative expression, such as sculpting, choreography, immersive environments, and cinematography. While there is a growing interest among artists in robotics, programming such machines is a challenge for most professionals in the field, as robots require extensive coding experience and are primarily designed for industrial applications and environments. To enable artists to incorporate robots in their projects, we propose an end-user-friendly robot programming solution using an intuitive spatial computing environment designed for Microsoft Hololens 2. In our application, the robot movements are synchronized with a hologram via network communication. Using natural hand gestures, users can manipulate, animate, and record the hologram similar to 3D animation software, including the advantages of mixed reality interaction. Our solution not only gives artists the ability to translate their creative ideas and movements to an industrial machine but also makes human-robot interaction safer, as robots can now be accurately and effectively operated from a distance. We consider this an important step in a more human-driven robotics community, allowing creators without robot programming experience to easily script and perform complex sequences of robotic movement in service of new arts applications. Making robots more collaborative and safer for humans to interact with dramatically increases their utility, exposure, and potential for social interaction, opens new markets, expands creative industries, and directly locates them in highly visible public spaces.more » « less
-
Turkan, Y. and (Ed.)This study gathered data into a construction robot schema (CRS) with an initial data structure that can be used to collect and exchange various construction robots’ information based on the data requirements of construction planners for robotics operations. To develop the CRS, the study conducted a systematic literature review using the Web of Science database to filter and identify relevant papers which were published from 2018 to 2022. Based on 279 eligible papers, the study identified significant information which involved data requirements of the construction domain on robotics using Nvivo software. To structure the information, the study summarized the information into parameters then categorized, defined, matched data types, and exemplified for these parameters. All the parameters were grouped into four categories, including ontological properties, operational requirements, activity, and safety. As a result, CRS supports data structure including 4 categories and 35 parameters with corresponding definitions, data types, examples, and references.more » « less