In previous work, researchers in Human-Robot Interaction (HRI) have demonstrated that user trust in robots depends on effective and transparent communication. This may be particularly true for robots used for transportation, due to user reliance on such robots for physical movement and safety. In this paper, we present the design of an experiment examining the importance of proactive communication by robotic wheelchairs, as compared to non-vehicular mobile robots, within a Virtual Reality (VR) environment. Furthermore, we describe the specific advantages – and limitations – of conducting this type of HRI experiment in VR.
more »
« less
SEAN-VR: An Immersive Virtual Reality Experience for Evaluating Social Robot Navigation
We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle.
more »
« less
- Award ID(s):
- 1924802
- PAR ID:
- 10461833
- Date Published:
- Journal Name:
- Companion of the 2023 ACM/IEEE International Conference on Human- Robot Interaction
- Page Range / eLocation ID:
- 902 to 904
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness.more » « less
-
With the pandemic preventing access to universities and consequently limiting in-person user studies, it is imperative to explore other mediums for conducting user studies for human-robot interaction. Virtual reality (VR) presents a novel and promising research platform that can potentially offer a creative and accessible environment for HRI studies. Despite access to VR being limited given its hardware requirements (e.g. need for headsets), web-based VR offers universal access to VR utilities through web browsers. In this paper, we present a participatory design pilot study, aimed at exploring the use of co-design of a robot using web-based VR. Results seem to show that web-based VR environments are engaging and accessible research platforms to gather environment and interaction data in HRI.more » « less
-
Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment.more » « less
-
Virtual reality (VR) offers potential as a collaborative tool for both technology design and human-robot interaction. We utilized a participatory, human-centered design (HCD) methodology to develop a collaborative, asymmetric VR game to explore teens’ perceptions of, and interactions with, social robots. Our paper illustrates three stages of our design process; ideation, prototyping, and usability testing with users. Through these stages we identified important design requirements for our mid-fidelity environment. We then describe findings from our pilot test of the mid-fidelity VR game with teens. Due to the unique asymmetric virtual reality design, we observed successful collaborations, and interesting collaboration styles across teens. This study highlights the potential for asymmetric VR as a collaborative design tool as well as an appropriate medium for successful teen-to-teen collaboration.more » « less