skip to main content


Title: Empirical analysis of losses from business-email compromise
We examine approximately nine months of data on losses from business email compromise (BEC) reported to the FBI’s Internet Crime Complaint Center in 2017. We describe the empirically observed loss distribution.We study differences in the amounts attempted stolen when the attacks were successful or not.We show that money stolen and transmitted internationally is less likely to be recovered. We also find, somewhat surprisingly, that illicit transfers to in-state banks are also more likely to succeed. Finally, we study state-level differences among BEC target selection and asset recovery.  more » « less
Award ID(s):
1652610
NSF-PAR ID:
10256908
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the APWG Symposium on Electronic Crime Research
ISSN:
2639-4286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Expert testimony varies in scientific quality and jurors have a difficult time evaluating evidence quality (McAuliff et al., 2009). In the current study, we apply Fuzzy Trace Theory principles, examining whether visual and gist aids help jurors calibrate to the strength of scientific evidence. Additionally we were interested in the role of jurors’ individual differences in scientific reasoning skills in their understanding of case evidence. Contrary to our preregistered hypotheses, there was no effect of evidence condition or gist aid on evidence understanding. However, individual differences between jurors’ numeracy skills predicted evidence understanding. Summary Poor-quality expert evidence is sometimes admitted into court (Smithburn, 2004). Jurors’ calibration to evidence strength varies widely and is not robustly understood. For instance, previous research has established jurors lack understanding of the role of control groups, confounds, and sample sizes in scientific research (McAuliff, Kovera, & Nunez, 2009; Mill, Gray, & Mandel, 1994). Still others have found that jurors can distinguish weak from strong evidence when the evidence is presented alone, yet not when simultaneously presented with case details (Smith, Bull, & Holliday, 2011). This research highlights the need to present evidence to jurors in a way they can understand. Fuzzy Trace Theory purports that people encode information in exact, verbatim representations and through “gist” representations, which represent summary of meaning (Reyna & Brainerd, 1995). It is possible that the presenting complex scientific evidence to people with verbatim content or appealing to the gist, or bottom-line meaning of the information may influence juror understanding of that evidence. Application of Fuzzy Trace Theory in the medical field has shown that gist representations are beneficial for helping laypeople better understand risk and benefits of medical treatment (Brust-Renck, Reyna, Wilhelms, & Lazar, 2016). Yet, little research has applied Fuzzy Trace Theory to information comprehension and application within the context of a jury (c.f. Reyna et. al., 2015). Additionally, it is likely that jurors’ individual characteristics, such as scientific reasoning abilities and cognitive tendencies, influence their ability to understand and apply complex scientific information (Coutinho, 2006). Methods The purpose of this study was to examine how jurors calibrate to the strength of scientific information, and whether individual difference variables and gist aids inspired by Fuzzy Trace Theory help jurors better understand complicated science of differing quality. We used a 2 (quality of scientific evidence: high vs. low) x 2 (decision aid to improve calibration - gist information vs. no gist information), between-subjects design. All hypotheses were preregistered on the Open Science Framework. Jury-eligible community participants (430 jurors across 90 juries; Mage = 37.58, SD = 16.17, 58% female, 56.93% White). Each jury was randomly assigned to one of the four possible conditions. Participants were asked to individually fill out measures related to their scientific reasoning skills prior to watching a mock jury trial. The trial was about an armed bank robbery and consisted of various pieces of testimony and evidence (e.g. an eyewitness testimony, police lineup identification, and a sweatshirt found with the stolen bank money). The key piece of evidence was mitochondrial DNA (mtDNA) evidence collected from hair on a sweatshirt (materials from Hans et al., 2011). Two experts presented opposing opinions about the scientific evidence related to the mtDNA match estimate for the defendant’s identification. The quality and content of this mtDNA evidence differed based on the two conditions. The high quality evidence condition used a larger database than the low quality evidence to compare to the mtDNA sample and could exclude a larger percentage of people. In the decision aid condition, experts in the gist information group presented gist aid inspired visuals and examples to help explain the proportion of people that could not be excluded as a match. Those in the no gist information group were not given any aid to help them understand the mtDNA evidence presented. After viewing the trial, participants filled out a questionnaire on how well they understood the mtDNA evidence and their overall judgments of the case (e.g. verdict, witness credibility, scientific evidence strength). They filled this questionnaire out again after a 45-minute deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. We developed a 20-item multiple-choice comprehension test for the mtDNA scientific information in the cases (modeled on Hans et al., 2011, and McAuliff et al., 2009). Participants were shown 20 statements related to DNA evidence and asked whether these statements were True or False. The test was then scored out of 20 points. Results For this project, we measured calibration to the scientific evidence in a few different ways. We are building a full model with these various operationalizations to be presented at APLS, but focus only on one of the calibration DVs (i.e., objective understanding of the mtDNA evidence) in the current proposal. We conducted a general linear model with total score on the mtDNA understanding measure as the DV and quality of scientific evidence condition, decision aid condition, and the four individual difference measures (i.e., NFC, ATS, WNS, and SRS) as predictors. Contrary to our main hypotheses, neither evidence quality nor decision aid condition affected juror understanding. However, the individual difference variables did: we found significant main effects for Scientific Reasoning Skills, F(1, 427) = 16.03, p <.001, np2 = .04, Weller Numeracy Scale, F(1, 427) = 15.19, p <.001, np2 = .03, and Need for Cognition, F(1, 427) = 16.80, p <.001, np2 = .04, such that those who scored higher on these measures displayed better understanding of the scientific evidence. In addition there was a significant interaction of evidence quality condition and scores on the Weller’s Numeracy Scale, F(1, 427) = 4.10, p = .04, np2 = .01. Further results will be discussed. Discussion These data suggest jurors are not sensitive to differences in the quality of scientific mtDNA evidence, and also that our attempt at helping sensitize them with Fuzzy Trace Theory-inspired aids did not improve calibration. Individual scientific reasoning abilities and general cognition styles were better predictors of understanding this scientific information. These results suggest a need for further exploration of approaches to help jurors differentiate between high and low quality evidence. Note: The 3rd author was supported by an AP-LS AP Award for her role in this research. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills help jurors understand complex scientific evidence. 
    more » « less
  2. Abstract Introduction

    Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks.

    Methods

    We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (PDPN) and folliculin (FLCN) expressions. We generated BECΔFLCNand LECΔPDPN, and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts.

    Results

    We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we foundPDPNto be the key surface protein that is responsible for LEC-BEC recognition, and LECs lackingPDPNbecame pseudo-BECs and vice versa. We also found thatFLCNmaintains BEC identity through downregulation ofPDPN.

    Conclusions

    Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact byPDPNwhich in turn is regulated byFLCN, which has important implications toward designing functional engineered tissues.

     
    more » « less
  3. Abstract

    Bose–Einstein condensation (BEC) is a quantum phenomenon in which a macroscopic number of bosons occupy the lowest energy state and acquire coherence at low temperatures. In three-dimensional antiferromagnets, a magnetic-field-induced transition has been successfully described as a magnon BEC. For a strictly two-dimensional (2D) system, it is known that BEC cannot take place due to the presence of a finite density of states at zero energy. However, in a realistic quasi-2D magnet consisting of stacked magnetic layers, a small but finite interlayer coupling stabilizes marginal BEC but such that 2D physics is still expected to dominate. This 2D-limit BEC behaviour has been reported in a few materials but only at very high magnetic fields that are difficult to access. The honeycombS = 1/2 Heisenberg antiferromagnet YbCl3exhibits a transition to a fully polarized state at a relatively low in-plane magnetic field. Here, we demonstrate the formation of a quantum critical 2D Bose gas at the transition field, which, with lowering the field, experiences a BEC marginally stabilized by an extremely small interlayer coupling. Our observations establish YbCl3, previously a Kitaev quantum spin liquid material, as a realization of a quantum critical BEC in the 2D limit.

     
    more » « less
  4. Abstract

    At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power.

     
    more » « less
  5. Abstract

    We show how Cooper-pair-assisted transport, which describes the stimulated transport of electrons in the presence of Cooper-pairs, can be engineered and controlled with cold atoms, in regimes that are difficult to access for condensed matter systems. Our model is a channel connecting two cold atomic gases, and the mechanism to generate such a transport relies on the coupling of the channel to a molecular BEC, with diatomic molecules of fermionic atoms. Our results are obtained using a Floquet–Redfield master equation that accounts for an exact treatment of the interaction between atoms in the channel. We explore, in particular, the impact of the coupling to the BEC and the interaction between atoms in the junction on its transport properties, revealing non-trivial dependence of the produced particle current. We also study the effects of finite temperatures of the reservoirs and the robustness of the current against additional dissipation acting on the junction. Our work is experimentally relevant and has potential applications to dissipation engineering of transport with cold atoms, studies of thermoelectric effects, quantum heat engines, or Floquet Majorana fermions.

     
    more » « less