skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-criticality and field induced non-BEC transition in frustrated magnets
Frustrated spin-systems have traditionally proven challenging to understand, owing to a scarcity of controlled methods for their analyses. By contrast, under strong magnetic fields, certain aspects of spin systems admit simpler and universal description in terms of hardcore bosons. The bosonic formalism is anchored by the phenomenon of Bose-Einstein condensation (BEC), which has helped explain the behaviors of a wide range of magnetic compounds under applied magnetic fields. Here, we focus on the interplay between frustration and externally applied magnetic field to identify instances where the BEC paradigm is no longer applicable. As a representative example, we consider the antiferromagnetic J1−J2−J3 model on the square lattice in the presence of a uniform external magnetic field, and demonstrate that the frustration-driven suppression of the Néel order leads to a Lifshitz transition for the hardcore bosons. In the vicinity of the Lifshitz point, the physics becomes unmoored from the BEC paradigm, and the behavior of the system, both at and below the saturation field, is controlled by a Lifshitz multicritical point. We obtain the resultant universal scaling behaviors, and provide strong evidence for the existence of a frustration and magnetic-field driven correlated bosonic liquid state along the entire phase boundary separating the Néel phase from other magnetically ordered states.  more » « less
Award ID(s):
1917511
PAR ID:
10417045
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
2211.05771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Multi-functional thin films of boron (B) doped Cr 2 O 3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H . Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr 2 O 3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent T N and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H  = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr 2 O 3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications. 
    more » « less
  2. Europium (Eu) metal has a body centered cubic crystal structure which, upon a paramagnetic-to-helical magnetic phase transition, undergoes a body centered tetragonal distortion. The magnetic helix appears below a Néel temperature (TN) of ∼90 K, and an applied magnetic field gives rise to conical magnet structure. We have prepared Eu metal thin films on Si (001) substrates using Eu metal as a target by pulsed laser deposition and studied the transport properties by a four-probe method. The resistance shows a sudden slope change at TN of 88 K. The magnetoresistance (MR) is positive at temperatures below 30 K and exhibits negative values above that. Our analyses show that the positive MR at low temperatures originates from magnetic field induced spin fluctuation, and the negative MR at higher temperature is a result of suppression of critical spin fluctuation of the Eu spins by the magnetic field. The Eu film also shows hysteretic MR behaviors in mid field range, which is a result of re-distribution of the helical antiferromagnetic domains by the magnetic fields. We have also studied the transverse magnetotransport in the Eu thin films. The observed anomalous Hall effect is believed to be associated with the magnetic moment induced by the field or due to the helical spin structure of Eu itself. 
    more » « less
  3. Abstract We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few important yet difficult (2 + 1) d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code $${{\mathbb{Z}}}_{2}$$ Z 2 topological ordered state and the Kagome $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal properties in highly entangled quantum matter. 
    more » « less
  4. Abstract At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power. 
    more » « less
  5. Abstract In the absence of frustration, interacting bosons in their ground state in one or two dimensions exist either in the superfluid or insulating phases. Superfluidity corresponds to frictionless flow of the matter field, and in optical conductivity is revealed through a distinct δ -functional peak at zero frequency with the amplitude known as the Drude weight. This characteristic low-frequency feature is instead absent in insulating phases, defined by zero static optical conductivity. Here we demonstrate that bosonic particles in disordered one dimensional chains can also exist in a conducting, non-superfluid, phase when their hopping is of the dipolar type, often viewed as short-ranged in one dimension. This phase is characterized by finite static optical conductivity, followed by a broad anti-Drude peak at finite frequencies. Off-diagonal correlations are also unconventional: they feature an integrable algebraic decay for arbitrarily large values of disorder. These results do not fit the description of any known quantum phase, and strongly suggest the existence of an unusual conducting state of bosonic matter in the ground state. 
    more » « less