skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ASYNC: A Cloud Engine with Asynchrony and History for Distributed Machine Learning
ASYNC is a framework that supports the implementation of asynchrony and history for optimization methods on distributed computing platforms. The popularity of asynchronous optimization methods has increased in distributed machine learning. However, their applicability and practical experimentation on distributed systems are limited because current bulk-processing cloud engines do not provide a robust support for asynchrony and history. With introducing three main modules and bookkeeping system-specific and application parameters, ASYNC provides practitioners with a framework to implement asynchronous machine learning methods. To demonstrate ease-of-implementation in ASYNC, the synchronous and asynchronous variants of two well-known optimization methods, stochastic gradient descent and SAGA, are demonstrated in ASYNC.  more » « less
Award ID(s):
1814888 1723085
PAR ID:
10256967
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Page Range / eLocation ID:
429 to 439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Regularization by denoising (RED) is a recently developed framework for solving inverse problems by integrating advanced denoisers as image priors. Recent work has shown its state-of-the-art performance when combined with pre-trained deep denoisers. However, current RED algorithms are inadequate for parallel processing on multicore systems. We address this issue by proposing a new asynchronous RED (ASYNC-RED) algorithm that enables asynchronous parallel processing of data, making it significantly faster than its serial counterparts for large-scale inverse problems. The computational complexity of ASYNC-RED is further reduced by using a random subset of measurements at every iteration. We present complete theoretical analysis of the algorithm by establishing its convergence under explicit assumptions on the data-fidelity and the denoiser. We validate ASYNC-RED on image recovery using pre-trained deep denoisers as priors. 
    more » « less
  2. This papers studies multi-agent (convex and nonconvex) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby i) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and ii) they can perform their local computations using (possibly) delayed, out-of-sync information from their neighbors. Delays need not be known to the agents or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the sum of agents’ gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes are employed. To the best of our knowledge, this is the first distributed algorithm with provable geometric convergence rate in such a general asynchonous setting. 
    more » « less
  3. The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets. 
    more » « less
  4. Task-based distributed frameworks (e.g., Ray, Dask, Hydro) have become increasingly popular for distributed applications that contain asynchronous and dynamic workloads, including asynchronous gradient descent, reinforcement learning, and model serving. As more data-intensive applications move to run on top of task-based systems, collective communication efficiency has become an important problem. Unfortunately, traditional collective communication libraries (e.g., MPI, Horovod, NCCL) are an ill fit, because they require the communication schedule to be known before runtime and they do not provide fault tolerance. We design and implement Hoplite, an efficient and fault-tolerant collective communication layer for task-based distributed systems. Our key technique is to compute data transfer schedules on the fly and execute the schedules efficiently through fine-grained pipelining. At the same time, when a task fails, the data transfer schedule adapts quickly to allow other tasks to keep making progress. We apply Hoplite to a popular task-based distributed framework, Ray. We show that Hoplite speeds up asynchronous stochastic gradient descent, reinforcement learning, and serving an ensemble of machine learning models that are difficult to execute efficiently with traditional collective communication by up to 7.8x, 3.9x, and 3.3x, respectively. 
    more » « less
  5. In database and large-scale data analytics, recursive aggregate processing plays an important role, which is generally implemented under a framework of incremental computing and executed synchronously and/or asynchronously. We identify three barriers in existing recursive aggregate data processing. First, the processing scope is largely limited to monotonic programs. Second, checking on conditions for monotonicity and correctness for async processing is sophisticated and manually done. Third, execution engines may be suboptimal due to separation of sync and async execution. In this paper, we lay an analytical foundation for conditions to check if a recursive aggregate program that is monotonic or even non-monotonic can be executed incrementally and asynchronously with its correct result. We design and implement a condition verification tool that can automatically check if a given program satisfies the conditions. We further propose a unified sync-async engine to execute these programs for high performance. To integrate all these effective methods together, we have developed a distributed Datalog system, called PowerLog. Our evaluation shows that PowerLog can outperform three representative Datalog systems on both monotonic and non-monotonic recursive programs. 
    more » « less