skip to main content


Title: “Did you know this camera tracks your mood?”: Understanding Privacy Expectations and Preferences in the Age of Video Analytics
Abstract Cameras are everywhere, and are increasingly coupled with video analytics software that can identify our face, track our mood, recognize what we are doing, and more. We present the results of a 10-day in-situ study designed to understand how people feel about these capabilities, looking both at the extent to which they expect to encounter them as part of their everyday activities and at how comfortable they are with the presence of such technologies across a range of realistic scenarios. Results indicate that while some widespread deployments are expected by many (e.g., surveillance in public spaces), others are not, with some making people feel particularly uncomfortable. Our results further show that individuals’ privacy preferences and expectations are complicated and vary with a number of factors such as the purpose for which footage is captured and analyzed, the particular venue where it is captured, and whom it is shared with. Finally, we discuss the implications of people’s rich and diverse preferences on opt-in or opt-out rights for the collection and use (including sharing) of data associated with these video analytics scenarios as mandated by regulations. Because of the user burden associated with the large number of privacy decisions people could be faced with, we discuss how new types of privacy assistants could possibly be configured to help people manage these decisions.  more » « less
Award ID(s):
1914486
NSF-PAR ID:
10257023
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2021
Issue:
2
ISSN:
2299-0984
Page Range / eLocation ID:
282 to 304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cameras are everywhere, and are increasingly coupled with video analytics software that can identify our face, track our mood, recognize what we are doing, and more. We present the results of a 10-day in-situ study designed to understand how people feel about these capabilities, looking both at the extent to which they expect to encounter them as part of their everyday activities and at how comfortable they are with the presence of such technologies across a range of realistic scenarios. Results indicate that while some widespread deployments are expected by many (e.g., surveillance in public spaces), others are not, with some making people feel particularly uncomfortable. Our results further show that individuals’ privacy preferences and expectations are complicated and vary with a number of factors such as the purpose for which footage is captured and analyzed, the particular venue where it is captured, and whom it is shared with. Finally, we discuss the implications of people’s rich and diverse preferences on opt-in or opt-out rights for the collection and use (including sharing) of data associated with these video analytics scenarios as mandated by regulations. Because of the user burden associated with the large number of privacy decisions people could be faced with, we discuss how new types of privacy assistants could possibly be configured to help people manage these decisions. 
    more » « less
  2. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  3. null (Ed.)
    The rapid growth of facial recognition technology across ever more diverse contexts calls for a better understanding of how people feel about these deployments — whether they see value in them or are concerned about their privacy, and to what extent they have generally grown accustomed to them. We present a qualitative analysis of data gathered as part of a 10-day experience sampling study with 123 participants who were presented with realistic deployment scenarios of facial recognition as they went about their daily lives. Responses capturing their attitudes towards these deployments were collected both in situ and through daily evening surveys, in which participants were asked to reflect on their experiences and reactions. Ten follow-up interviews were conducted to further triangulate the data from the study. Our results highlight both the perceived benefits and concerns people express when faced with different facial recognition deployment scenarios. Participants reported concerns about the accuracy of the technology, including possible bias in its analysis, privacy concerns about the type of information being collected or inferred, and more generally, the dragnet effect resulting from the widespread deployment. Based on our findings, we discuss strategies and guidelines for informing the deployment of facial recognition, particularly focusing on ensuring that people are given adequate levels of transparency and control. 
    more » « less
  4. null (Ed.)
    Browser users encounter a broad array of potentially intrusive practices: from behavioral profiling, to crypto-mining, fingerprinting, and more. We study people’s perception, awareness, understanding, and preferences to opt out of those practices. We conducted a mixed-methods study that included qualitative (n=186) and quantitative (n=888) surveys covering 8 neutrally presented practices, equally highlighting both their benefits and risks. Consistent with prior research focusing on specific practices and mitigation techniques, we observe that most people are unaware of how to effectively identify or control the practices we surveyed. However, our user-centered approach reveals diverse views about the perceived risks and benefits, and that the majority of our participants wished to both restrict and be explicitly notified about the surveyed practices. Though prior research shows that meaningful controls are rarely available, we found that many participants mistakenly assume opt-out settings are common but just too difficult to find. However, even if they were hypothetically available on every website, our findings suggest that settings which allow practices by default are more burdensome to users than alternatives which are contextualized to website categories instead. Our results argue for settings which can distinguish among website categories where certain practices are seen as permissible, proactively notify users about their presence, and otherwise deny intrusive practices by default. Standardizing these settings in the browser rather than being left to individual websites would have the advantage of providing a uniform interface to support notification, control, and could help mitigate dark patterns. We also discuss the regulatory implications of the findings. 
    more » « less
  5. Abstract: Jury notetaking can be controversial despite evidence suggesting benefits for recall and understanding. Research on note taking has historically focused on the deliberation process. Yet, little research explores the notes themselves. We developed a 10-item coding guide to explore what jurors take notes on (e.g., simple vs. complex evidence) and how they take notes (e.g., gist vs. specific representation). In general, jurors made gist representations of simple and complex information in their notes. This finding is consistent with Fuzzy Trace Theory (Reyna & Brainerd, 1995) and suggests notes may serve as a general memory aid, rather than verbatim representation. Summary: The practice of jury notetaking in the courtroom is often contested. Some states allow it (e.g., Nebraska: State v. Kipf, 1990), while others forbid it (e.g., Louisiana: La. Code of Crim. Proc., Art. 793). Some argue notes may serve as a memory aid, increase juror confidence during deliberation, and help jurors engage in the trial (Hannaford & Munsterman, 2001; Heuer & Penrod, 1988, 1994). Others argue notetaking may distract jurors from listening to evidence, that juror notes may be given undue weight, and that those who took notes may dictate the deliberation process (Dann, Hans, & Kaye, 2005). While research has evaluated the efficacy of juror notes on evidence comprehension, little work has explored the specific content of juror notes. In a similar project on which we build, Dann, Hans, and Kaye (2005) found jurors took on average 270 words of notes each with 85% including references to jury instructions in their notes. In the present study we use a content analysis approach to examine how jurors take notes about simple and complex evidence. We were particularly interested in how jurors captured gist and specific (verbatim) information in their notes as they have different implications for information recall during deliberation. According to Fuzzy Trace Theory (Reyna & Brainerd, 1995), people extract “gist” or qualitative meaning from information, and also exact, verbatim representations. Although both are important for helping people make well-informed judgments, gist-based understandings are purported to be even more important than verbatim understanding (Reyna, 2008; Reyna & Brainer, 2007). As such, it could be useful to examine how laypeople represent information in their notes during deliberation of evidence. Methods Prior to watching a 45-minute mock bank robbery trial, jurors were given a pen and notepad and instructed they were permitted to take notes. The evidence included testimony from the defendant, witnesses, and expert witnesses from prosecution and defense. Expert testimony described complex mitochondrial DNA (mtDNA) evidence. The present analysis consists of pilot data representing 2,733 lines of notes from 52 randomly-selected jurors across 41 mock juries. Our final sample for presentation at AP-LS will consist of all 391 juror notes in our dataset. Based on previous research exploring jury note taking as well as our specific interest in gist vs. specific encoding of information, we developed a coding guide to quantify juror note-taking behaviors. Four researchers independently coded a subset of notes. Coders achieved acceptable interrater reliability [(Cronbach’s Alpha = .80-.92) on all variables across 20% of cases]. Prior to AP-LS, we will link juror notes with how they discuss scientific and non-scientific evidence during jury deliberation. Coding Note length. Before coding for content, coders counted lines of text. Each notepad line with at minimum one complete word was coded as a line of text. Gist information vs. Specific information. Any line referencing evidence was coded as gist or specific. We coded gist information as information that did not contain any specific details but summarized the meaning of the evidence (e.g., “bad, not many people excluded”). Specific information was coded as such if it contained a verbatim descriptive (e.g.,“<1 of people could be excluded”). We further coded whether this information was related to non-scientific evidence or related to the scientific DNA evidence. Mentions of DNA Evidence vs. Other Evidence. We were specifically interested in whether jurors mentioned the DNA evidence and how they captured complex evidence. When DNA evidence was mention we coded the content of the DNA reference. Mentions of the characteristics of mtDNA vs nDNA, the DNA match process or who could be excluded, heteroplasmy, references to database size, and other references were coded. Reliability. When referencing DNA evidence, we were interested in whether jurors mentioned the evidence reliability. Any specific mention of reliability of DNA evidence was noted (e.g., “MT DNA is not as powerful, more prone to error”). Expert Qualification. Finally, we were interested in whether jurors noted an expert’s qualifications. All references were coded (e.g., “Forensic analyst”). Results On average, jurors took 53 lines of notes (range: 3-137 lines). Most (83%) mentioned jury instructions before moving on to case specific information. The majority of references to evidence were gist references (54%) focusing on non-scientific evidence and scientific expert testimony equally (50%). When jurors encoded information using specific references (46%), they referenced non-scientific evidence and expert testimony equally as well (50%). Thirty-three percent of lines were devoted to expert testimony with every juror including at least one line. References to the DNA evidence were usually focused on who could be excluded from the FBIs database (43%), followed by references to differences between mtDNA vs nDNA (30%), and mentions of the size of the database (11%). Less frequently, references to DNA evidence focused on heteroplasmy (5%). Of those references that did not fit into a coding category (11%), most focused on the DNA extraction process, general information about DNA, and the uniqueness of DNA. We further coded references to DNA reliability (15%) as well as references to specific statistical information (14%). Finally, 40% of jurors made reference to an expert’s qualifications. Conclusion Jury note content analysis can reveal important information about how jurors capture trial information (e.g., gist vs verbatim), what evidence they consider important, and what they consider relevant and irrelevant. In our case, it appeared jurors largely created gist representations of information that focused equally on non-scientific evidence and scientific expert testimony. This finding suggests note taking may serve not only to represent information verbatim, but also and perhaps mostly as a general memory aid summarizing the meaning of evidence. Further, jurors’ references to evidence tended to be equally focused on the non-scientific evidence and the scientifically complex DNA evidence. This observation suggests jurors may attend just as much to non-scientific evidence as they to do complex scientific evidence in cases involving complicated evidence – an observation that might inform future work on understanding how jurors interpret evidence in cases with complex information. Learning objective: Participants will be able to describe emerging evidence about how jurors take notes during trial. 
    more » « less