- Award ID(s):
- 1809571
- PAR ID:
- 10257050
- Date Published:
- Journal Name:
- Annual Review of Materials Research
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 1531-7331
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not currently limited to pure metals and conventional metallic alloys, and a wide range of materials are processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanism of geological and astronomical phenomena and the origin of life. Keywords: Severe plastic deformation (SPD); Nanostructured materials; Ultrafine grained (UFG) materials; Gradient-structured materials, High-pressure torsion (HPT)more » « less
-
null (Ed.)The development of structural materials with outstanding mechanical response has long been sought for innumerable industrial, technological, and even biomedical applications. However, these compounds tend to derive their fascinating properties from a myriad of interactions spanning multiple scales, from localized chemical bonding to macroscopic interactions between grains. This diversity has limited the ability of researchers to develop new materials on a reasonable timeline. Fortunately, the advent of machine learning in materials science has provided a new approach to analyze high-dimensional space and identify correlations among the structure-composition-property-processing relationships that may have been previously missed. In this review, we examine some successful examples of using data science to improve known structural materials by analyzing fatigue and failure, and we discuss approaches to develop entirely new classes of structural materials in complex composition spaces including high-entropy alloys and bulk metallic glasses. Highlighting the recent advancement in this field demonstrates the power of data-driven methodologies that will hopefully lead to the production of market-ready structural materials.more » « less
-
New magnetic materials for energy and information-processing applications are of paramount importance in view of significant global challenges in environmental and information security. The discovery and design of materials requires efficient computational and experimental approaches for high throughput and efficiency. When increasingly powerful computational techniques are combined with special non-equilibrium fabrication methods, the search can uncover metastable compounds with desired magnetic properties. Here we review recent results on novel Fe-, Co- and Mn-rich magnetic compounds with high magnetocrystalline anisotropy, saturation magnetization, and Curie temperature created by combining experiments, adaptive genetic algorithm searches, and advanced electronic-structure computational methods. We discuss structural and magnetic properties of such materials including Co– and/or Fe–X compounds (X = N, Si, Sn, Zr, Hf, Y, C, S, Ti, or Mn), and their prospects for practical applications.more » « less
-
Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host’s responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.more » « less
-
Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions.