skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Dispersive fractalisation in linear and nonlinear Fermi–Pasta–Ulam–Tsingou lattices
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O( h −2 ), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.  more » « less
Award ID(s):
1913272
PAR ID:
10257293
Author(s) / Creator(s):
;
Date Published:
Journal Name:
European Journal of Applied Mathematics
ISSN:
0956-7925
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study derives simple analytical expressions for the theoretical height profiles of particle number concentrations (Nt) and mean volume diameters (Dm) during the steady-state balance of vapor growth and collision–coalescence with sedimentation. These equations are general for both rain and snow gamma size distributions with size-dependent power-law functions that dictate particle fall speeds and masses. For collision–coalescence only,Nt(Dm) decreases (increases) as an exponential function of the radar reflectivity difference between two height layers. For vapor deposition only,Dmincreases as a generalized power law of this reflectivity difference. Simultaneous vapor deposition and collision–coalescence under steady-state conditions with conservation of number, mass, and reflectivity fluxes lead to a coupled set of first-order, nonlinear ordinary differential equations forNtandDm. The solutions to these coupled equations are generalized power-law functions of heightzforDm(z) andNt(z) whereby each variable is related to one another with an exponent that is independent of collision–coalescence efficiency. Compared to observed profiles derived from descending in situ aircraft Lagrangian spiral profiles from the CRYSTAL-FACE field campaign, these analytical solutions can on average capture the height profiles ofNtandDmwithin 8% and 4% of observations, respectively. Steady-state model projections of radar retrievals aloft are shown to produce the correct rapid enhancement of surface snowfall compared to the lowest-available radar retrievals from 500 m MSL. Future studies can utilize these equations alongside radar measurements to estimateNtandDmbelow radar tilt elevations and to estimate uncertain microphysical parameters such as collision–coalescence efficiencies.

    Significance Statement

    While complex numerical models are often used to describe weather phenomenon, sometimes simple equations can instead provide equally good or comparable results. Thus, these simple equations can be used in place of more complicated models in certain situations and this replacement can allow for computationally efficient and elegant solutions. This study derives such simple equations in terms of exponential and power-law mathematical functions that describe how the average size and total number of snow or rain particles change at different atmospheric height levels due to growth from the vapor phase and aggregation (the sticking together) of these particles balanced with their fallout from clouds. We catalog these mathematical equations for different assumptions of particle characteristics and we then test these equations using spirally descending aircraft observations and ground-based measurements. Overall, we show that these mathematical equations, despite their simplicity, are capable of accurately describing the magnitude and shape of observed height and time series profiles of particle sizes and numbers. These equations can be used by researchers and forecasters along with radar measurements to improve the understanding of precipitation and the estimation of its properties.

     
    more » « less
  2. We implement the numerical unified transform method to solve the nonlinear Schrödinger equation on the half-line. For the so-called linearizable boundary conditions, the method solves the half-line problems with comparable complexity as the numerical inverse scattering transform solves whole-line problems. In particular, the method computes the solution at any x and t without spatial discretization or time stepping. Contour deformations based on the method of nonlinear steepest descent are used so that the method’s computational cost does not increase for large x , t and the method is more accurate as x , t increase. Our ideas also apply to some cases where the boundary conditions are not linearizable. 
    more » « less
  3. Abstract

    In this study, the fatigue progression and optimal motion trajectory during repetitive lifting task is predicted by using a 10 degrees of freedom (DOFs) two-dimensional (2D) digital human model and a three-compartment controller (3CC) fatigue model. The numerical analysis is further validated by conducting an experiment under similar conditions. The human is modeled using Denavit-Hartenberg (DH) representation. The task is mathematically formulated as a nonlinear optimization problem where the dynamic effort of the joints is minimized subjected to physical and task specific constraints. A sequential quadratic programming method is used for the optimization process. The design variables include control points of (1) quartic B-splines of the joint angle profiles; and (2) the three compartment sizes profiles for the six physical joints of interest — spine, shoulder, elbow, hip, knee, and ankle. Both numerical and experimental liftings are performed with a 15.2 kg box as external load. The simulation reports the human joint torque profiles and the progression of joint fatigue. The joint torque profiles show periodic trends. A maximum of 17 cycles are predicted before the repetitive lifting task fails, which also reasonably agrees with that of the experimental results (16 cycles). This formulation is also a generalized one, hence it can be used for other repetitive motion studies as well.

     
    more » « less
  4. Abstract

    Periodic traveling waves are numerically computed in a constant vorticity flow subject to the force of gravity. The Stokes wave problem is formulated via a conformal mapping as a nonlinear pseudodifferential equation, involving a periodic Hilbert transform for a strip, and solved by the Newton‐GMRES method. For strong positive vorticity, in the finite or infinite depth, overhanging profiles are found as the amplitude increases and tend to a touching wave, whose surface contacts itself at the trough line, enclosing an air bubble; numerical solutions become unphysical as the amplitude increases further and make a gap in the wave speed versus amplitude plane; another touching wave takes over and physical solutions follow along the fold in the wave speed versus amplitude plane until they ultimately tend to an extreme wave, which exhibits a corner at the crest. Touching waves connected to zero amplitude are found to approach the limiting Crapper wave as the strength of positive vorticity increases unboundedly, while touching waves connected to the extreme waves approach the rigid body rotation of a fluid disk.

     
    more » « less
  5. This paper focuses on the laminar boundary layer startup process (momentum and thermal) in incompressible flows. The unsteady boundary layer equations can be solved via similarity analysis by normalizing the stream-wise (x), wall-normal (y) and time (t) coordinates by a variable η and τ, respectively. The resulting ODEs are solved by a finite difference explicit algorithm. This can be done for two cases: flat plate flow where the change in pressure are zero (Blasius solution) and wedge or Falkner-Skan flow where the changes in pressure can be favorable (FPG) or adverse (APG). In addition, transient passive scalar transport is examined by setting several Prandtl numbers in the governing equation at two different wall thermal conditions: isothermal and isoflux. Numerical solutions for the transient evolution of the momentum and thermal boundary layer profiles are compared with analytical approximations for both small times (unsteady flow) and large (steady-state flow) times. 
    more » « less