Abstract The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2and TrX3(Tr=B, Al, and Ga; X=H, F, Cl, Br, and I) is investigated via the MP2/aug‐cc‐pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π‐hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between −2 and −69 kcal/mol. Mg(CH3)2forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past.
more »
« less
Weak σ‐Hole Triel Bond between C 5 H 5 Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects
Abstract The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ‐hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B+cation above the ring pulls density toward itself and thus magnifies the Tr σ‐hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B.
more »
« less
- Award ID(s):
- 1954310
- PAR ID:
- 10257534
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 22
- Issue:
- 5
- ISSN:
- 1439-4235
- Format(s):
- Medium: X Size: p. 481-487
- Size(s):
- p. 481-487
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Halogen bonding (XB) has emerged as an important bonding motif in supramolecules and biological systems. Although regarded as a strong noncovalent interaction, benchmark measurements of the halogen bond energy are scarce. Here, a combined anion photoelectron spectroscopy and density functional theory (DFT) study of XB in solvated Br−anions is reported. The XB strength between the positively‐charged σ‐hole on the Br atom of the bromotrichloromethane (CCl3Br) molecule and the Br−anion was found to be 0.63 eV (14.5 kcal mol−1). In the neutral complexes, Br(CCl3Br)1,2, the attraction between the free Br atom and the negatively charged equatorial belt on the Br atom of CCl3Br, which is a second type of halogen bonding, was estimated to have interaction strengths of 0.15 eV (3.5 kcal mol−1) and 0.12 eV (2.8 kcal mol−1).more » « less
-
When attached to a tetrazole, a TtR 3 group (Tt = C, Si; R = H, F) engages in a Tt⋯N tetrel bond (TtB) with the Lewis base NCM (M = Li, Na). MP2/aug-cc-pVTZ calculations find that the Si⋯N TtB is rather strong, more than 20 kcal mol −1 for SiH 3 , and between 46 and 53 kcal mol −1 for SiF 3 . The C⋯N TtBs are relatively weaker, less than 8 kcal mol −1 . All of these bonds are intensified when a BH 3 or BF 3 molecule forms a triel bond to a N atom of the tetrazole ring, particularly for the C⋯N TtB, up to 11 kcal mol −1 . In these triads, the SiR 3 group displaces far enough along the line toward the base that it may be thought of as half transferred.more » « less
-
The ability of two anions to interact with one another is tested in the context of pairs of TrX 4 − homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF 4 − , with interaction energies surpassing 30 kcal mol −1 . Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies.more » « less
-
Abstract The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.more » « less
An official website of the United States government
