skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1954310

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As a flat trigonal species, the CR3+carbenium ion contains a pair of deep π‐holes above and below its molecular plane. In the case of CH3+a first base will form a covalent bond with the central C, making the combined species tetrahedral. Approach of a second base to the opposite side results in a longer but rather strong noncovalent tetrel bond (TB). While CMe3+can also form a similar asymmetric complex with a pair of bases, it also has the capacity to form a pair of nearly equivalent TBs, such that the resulting symmetric trigonal bipyramid configuration is only slightly higher in energy. When the three substituents on the central C are phenyl rings, the symmetric configuration with two TBs predominates. These tetrel bonds are quite strong, reaching up to 20 kcal/mol. Adding OPH2or OCH substituents to the phenyl rings permits the formation of intramolecular C⋅⋅O TBs to the central C, very similar in many respects to the case where these TBs are intermolecular.

     
    more » « less
  2. Abstract

    Adducts between OsO4and Lewis bases exert a role in important oxidation processes such as epoxidation and dihydroxylation. It has been shown that the attractive interaction driving the formation of these adducts is a σ‐hole bond involving the metal as the electrophilic species; the term Osme Bond (OmB) was proposed for designating it. Here some new adducts between OsO4and various bases have been characterized through single crystal x‐ray diffraction (XRD) and computational studies (density functional theory, DFT), confirming the existence of a robust correlation between σ‐hole interaction energy and deformation of the tetrahedral geometry of OsO4. Also, some adducts formed by RuO4with nucleophiles were investigated computationally.

     
    more » « less
  3. Abstract

    The lone pair of the N atom is a common electron donor in noncovalent bonds. Quantum calculations examine how various aspects of the base on which the N is located affect the strength and other properties of complexes formed with Lewis acids FH, FBr, F2Se, and F3As that respectively encompass hydrogen, halogen, chalcogen, and pnicogen bonds. In most cases the halogen bond is the strongest, followed in order by chalcogen, hydrogen, and pnicogen. The noncovalent bond strength increases in the sp23order of hybridization of N. Replacement of H substituents on the base by a methyl group or substituting N by C atom to which the base N is attached, strengthens the bond. The strongest bonds occur for trimethylamine and the weakest for N2.

     
    more » « less
  4. Abstract

    A chalcogen atom Y contains two separate σ‐holes when in a R1YR2molecular bonding pattern. Quantum chemical calculations consider competition between these two σ‐holes to engage in a chalcogen bond (ChB) with a NH3base. R groups considered include F, Br, I, and tert‐butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron‐withdrawing substituents R1and R2act cooperatively to deepen the two σ‐holes, but the deeper of the two holes consistently lies opposite to the more electron‐withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti‐cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ‐holes are unable to form a ChB at all when a base occupies the other site.

     
    more » « less
  5. Abstract

    The PnF2(Pn=P,As,Sb,Bi) on a naphthalene scaffold can engage in an internal pnicogen Pn⋅⋅⋅N bond (PnB) with an NH2group placed close to it on the adjoining ring. An approaching neutral NH3molecule can engage in a second PnB with the central Pn, which tends to weaken the intramolecular bond. The presence of the latter in turn weakens the intermolecular PnB with respect to that formed in its absence. Replacement of the external NH3by a CNanion causes a fundamental change in the bonding pattern, producing a fourth covalent bond with Pn, which rearranges into a trigonal bipyramidal motif. This addition disrupts the internal Pn⋅⋅⋅N pnicogen bond, recasting the PnF2⋅⋅⋅NH2interaction into an NH⋅⋅⋅F H‐bond.

     
    more » « less
  6. Abstract

    The crystal structure of a newly synthesized compound, [PbL(Ac)]2, (where L=2 (amino(pyrazin‐2‐yl) methylene) hydrazinecarbothioamide, Ac=acetate anion) exhibits a close contact between pairs of Pb atoms, suggesting a ditetrel bond, in addition to two Pb⋅⋅⋅O tetrel bonds, and two C−H⋅⋅⋅O H‐bonds. The presence of this ditetrel bond as an attractive component is confirmed by various quantum chemical methods. This novelty of this particular bond is its existence even in the absence of a σ‐hole on the Pb atom, which is typically considered a prerequisite for a bond of this type. From a wider perspective, a survey of the Cambridge Structural Database suggests this bond may be more common than was hitherto thought, with 44 examples of Pb⋅⋅⋅Pb contacts amongst a total number of 219 examples of T⋅⋅⋅T interactions in general (T=Si, Ge, Sn, Pb).

     
    more » « less
  7. Abstract

    The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.

     
    more » « less
  8. Abstract

    The T⋅⋅⋅N tetrel bond (TB) formed between TX3OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug‐cc‐pVTZ level. Complexes involving TH3OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T−O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.

     
    more » « less
  9. Abstract

    Crystal structures document the ability of a TF3group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring.Ab initiocalculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CNanionic base can approach the T either along the extension of a T−C or T−F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.

     
    more » « less
  10. Abstract

    The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2(Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2with B(CH3)3and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.

     
    more » « less