skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early defect identification for micro light‐emitting diode displays via photoluminescent and cathodoluminescent imaging
Abstract Ultrahigh‐resolution micro light‐emitting diode (LED) displays are emerging as a viable technology for self‐emissive displays. Several of the critical issues facing micro LED displays with millions of pixels are fidelity, process control, and defect analysis during LED fabrication and transfer. Here, we investigate two non‐destructive test methods, photoluminescent and cathodoluminescent imaging, and compare them with electroluminescent images to verify LED fidelity and evaluate these methods as potential tools for defect analysis. We show that utilizing cathodoluminescent imaging as an analysis tool provides a rich data set that can identify and categorize common defects during micro LED display fabrication that correspond to electroluminescence. Photoluminescent imaging, however, is not an effective method for fidelity analysis but does provide information on dry‐etching uniformity.  more » « less
Award ID(s):
1926747
PAR ID:
10258860
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of the Society for Information Display
Volume:
29
Issue:
4
ISSN:
1071-0922
Format(s):
Medium: X Size: p. 264-274
Size(s):
p. 264-274
Sponsoring Org:
National Science Foundation
More Like this
  1. A universal method of micro-patterning thin quantum dot films is highly desired by industry to enable integration of quantum dot materials with optoelectronic devices. Many of the methods reported so far, including specially engineered photoresist or ink-jet printing, are either of poor yield, resolution limited, difficult to scale for mass production, overly expensive or sacrifice some optical quality of the quantum dots. In our previous work, we presented a dry photolithographic lift-off method for pixelization of solution-processed materials and demonstrated its application in patterning perovskite quantum dot pixels, 10 µm in diameter, to construct a static micro-display. In this report, we present further development of this method, and demonstrate high-resolution patterning (~1 µm diameter), full-scale processing on 100 mm wafer, and multi-color integration of two different varieties of quantum dots. Perovskite and cadmium-selenide quantum dots were adopted for the experimentation, but the method can be applied to other types of solution-processed materials. We also show the viability of this method for constructing high-resolution micro-arrays of quantum dot color-convertors by fabricating patterned films directly on top of a blue gallium-nitride LED substrate. The green perovskite quantum dots used for fabrication are synthesized and prepared by our research group via room temperature ligand-assisted reprecipitation method, and these synthesized quantum dots have a photoluminescent quantum yield of 93.6% and full-width half-maximum emission linewidth less than 20 nm. Our results demonstrate the viability of this method for use in scalable manufacturing of high-resolution micro-displays. 
    more » « less
  2. Abstract Emissive displays based on light‐emitting diodes (LEDs), with high pixel density, luminance, efficiency, and large color gamut, are of great interest for applications such as watches, phones, and virtual displays. The high pixel density requirements of some emissive displays require a particular class of LEDs that are sub‐20‐micrometers in length, called micro‐LEDs. While state‐of‐the‐art emissive displays incorporate organic LEDs, an alternative is inorganic III‐nitride LEDs with potential reliability and efficiency benefits. Here we explore the performance, challenges, and prospective outcomes for III‐nitride micro‐LEDs to produce efficient emissive displays and provide insight to advance this technology. Calculations are performed to determine the operating points for the micro‐LEDs and the efficiency of the overall emissive display. It is shown that III‐nitride micro‐LEDs suffer from some of the same problems as their larger‐sized solid‐state lighting LED cousins; however, the operating conditions of micro‐LEDs can result in different challenges and research efforts. These challenges include improving efficiency at low current densities; improving the efficiency of longer wavelength (green and red) LEDs; and creating device designs that can overcome low coupling efficiency, high surface recombination, and display assembly difficulties. 
    more » « less
  3. Abstract MXenes are a class of 2D materials that have gained significant attention for their potential applications in energy storage, electromagnetic interference shielding, biomedicine, and (opto)electronics. Despite their broad range of applications, a detailed understanding of the internal architecture of MXene‐based materials remains limited due to the lack of effective 3D imaging techniques. This work demonstrates the application of X‐ray micro‐computed tomography (micro‐CT) to investigate various MXene systems, including nanocomposites, coated textiles, and aerogels. Micro‐CT enables high‐resolution, 3D visualization of the internal microstructure, MXene distribution, infiltration patterns, and defect formations, which significantly influence the material's performance. Moreover, the typical technical challenges and limitations encountered during sample preparation, scanning, and post‐processing of micro‐CT data are discussed. The information obtained from optical and electron microscopy is also compared with micro‐CT, highlighting the unique advantages of micro‐CT in providing comprehensive 3D imaging and quantitative data. This study highlights micro‐CT as a powerful and nondestructive imaging tool for characterizing MXene‐based materials, providing insights into material optimization and guidelines for developing future advanced applications. 
    more » « less
  4. Abstract Nature‐inspired functional surfaces with micro‐ and nanoscale features have garnered interest for potential applications in optics, imaging, and sensing. Traditional fabrication methods, such as lithography and self‐assembly, face limitations in versatility, scalability, and morphology control. This study introduces an innovative technology, condensed droplet polymerization (CDP), for fabricating polymeric micro‐ and nano‐dome arrays (PDAs) with readily tunable geometric properties—a challenging feat for conventional methods. The CDP process leverages free‐radical polymerization in condensed monomer droplets, allowing rapid production of PDAs with targeted sizes, radii of curvature, and surface densities by manipulating a key synthesis parameter: the temperature of a filament array that activates initiators. This work systematically unravels its effects on polymerization kinetics, viscoelastic properties of the polymerizing droplets, and geometric characteristics of the PDAs. Utilizing in situ digital microscope, this work reveals the morphological evolution of the PDAs during the process. The resulting PDAs exhibit distinct optical properties, including magnification that enables high‐resolution imaging beyond the diffraction limit of conventional microscopes. This work demonstrates the ability to magnify and focus light, enhancing imaging of subwavelength structures and biological specimens. This work advances the understanding of polymerization mechanisms in nano‐sized reactors (i.e., droplets) and paves the way for developing compact optical imaging and sensing technologies. 
    more » « less
  5. Abstract Over the course of millions of years, nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency, multifunctionality, and sustainability. What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures. Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties. Of the available manufacturing methods, additive manufacturing (AM) has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways. This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces, their fabrication techniques, and diverse applications. A comprehensive evaluation of micro fabrication methods is conducted, delving into their respective strengths and limitations. Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision. The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays, microneedles, and tissue scaffolds. 
    more » « less