During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745–0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.
COVID-19 Screening Using Residual Attention Network an Artificial Intelligence Approach
Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2). The virus transmits rapidly; it has a basic reproductive number (R0) of 2.2-2.7. In March 2020, the World Health Organization declared the COVID-19 outbreak a pandemic. COVID-19 is currently affecting more than 200 countries with 6M active cases. An effective testing strategy for COVID-19 is crucial to controlling the outbreak but the demand for testing surpasses the availability of test kits that use Reverse Transcription Polymerase Chain Reaction (RT-PCR). In this paper, we present a technique to screen for COVID-19 using artificial intelligence. Our technique takes only seconds to screen for the presence of the virus in a patient. We collected a dataset of chest X-ray images and trained several popular deep convolution neural network-based models (VGG, MobileNet, Xception, DenseNet, InceptionResNet) to classify the chest X-rays. Unsatisfied with these models, we then designed and built a Residual Attention Network that was able to screen COVID-19 with a testing accuracy of 98% and a validation accuracy of 100%. A feature maps visual of our model show areas in a chest X-ray which are important for classification. Our work can help to increase the adaptation of AI-assisted applications in clinical practice. The code and dataset used in this project are available at https://github.com/vishalshar/covid-19-screening-using-RAN-on-X-ray-images.
more »
« less
- Award ID(s):
- 1759965
- NSF-PAR ID:
- 10259906
- Date Published:
- Journal Name:
- 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
- Page Range / eLocation ID:
- 1354 to 1361
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Hemanth, Jude (Ed.)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence (AI), deep learning has been applied to perform COVID-19 infection region segmentation and disease classification by analyzing CXR and CT data. However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated. In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty. The proposed method has been validated on a large dataset that is associated with CXR image segmentation. Experimental results demonstrate that the proposed method can improve the segmentation performance, as well as decrease prediction uncertainty.more » « less
-
null (Ed.)Abstract Dr. Deborah Birx, the White House Coronavirus Task Force coordinator, told NBC News on “Meet the Press” that “[T]he U.S. needs a ‘breakthrough’ in coronavirus testing to help screen Americans and get a more accurate picture of the virus’ spread.” We have been involved with biopathogen detection since the 2001 anthrax attacks and were the first to detect anthrax in real-time. A variation on the laser spectroscopic techniques we developed for the rapid detection of anthrax can be applied to detect the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2 virus). In addition to detecting a single virus, this technique allows us to read its surface protein structure. In particular, we have been conducting research based on a variety of quantum optical approaches aimed at improving our ability to detect Corona Virus Disease-2019 (COVID-19) viral infection. Indeed, the detection of a small concentration of antibodies, after an infection has passed, is a challenging problem. Likewise, the early detection of disease, even before a detectible antibody population has been established, is very important. Our team is researching both aspects of this problem. The paper is written to stimulate the interest of both physical and biological scientists in this important problem. It is thus written as a combination of tutorial (review) and future work (preview). We join Prof. Federico Capasso and Editor Dennis Couwenberg in expressing our appreciation to all those working so heroically on all aspects of the COVID-19 problem. And we thank Drs. Capasso and Couwenberg for their invitation to write this paper.more » « less
-
With the spread of COVID-19, significantly more patients have required medical diagnosis to determine whether they are a carrier of the virus. COVID-19 can lead to the development of pneumonia in the lungs, which can be captured in X-Ray and CT scans of the patient's chest. The abundance of X-Ray and CT image data available can be used to develop a high-performing computer vision model able to identify and classify instances of pneumonia present in medical scans. Predictions made by these deep learning models can increase the confidence of diagnoses made by analyzing minute features present in scans exhibiting COVID-19 pneumonia, often unnoticeable to the human eye. Furthermore, rather than teaching clinicians about the mathematics behind deep learning and heat maps, we introduce novel methods of explainable artificial intelligence (XAI) with the goal to annotate instances of pneumonia in medical scans exactly as radiologists do to inform other radiologists, clinicians, and interns about patterns and findings. This project explores methods to train and optimize state-of-the-art deep learning models on COVID-19 pneumonia medical scans and apply explainability algorithms to generate annotated explanations of model predictions that are useful to clinicians and radiologists in analyzing these images.more » « less
-
null (Ed.)The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in 2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1 million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and may need mechanical ventilation to help them breath. Being able to predict which patients with COVID-19 will become severely ill could help hospitals around the world manage the huge influx of patients caused by the pandemic and save lives. Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission, and the need for mechanical ventilation with more than 86% accuracy, based on patient characteristics, clinical symptoms, laboratory results and chest x-rays. Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male, having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue damage, severe inflammation or oxygen deprivation in the body's tissues were important warning signs of severe disease. The results provide a more detailed picture of the patients who are likely to suffer from severe forms of COVID-19. Using the predictive models may help physicians identify patients who appear okay but need closer monitoring and more aggressive treatment. The models may also help policy makers decide who needs workplace accommodations such as being allowed to work from home, which individuals may benefit from more frequent testing, and who should be prioritized for vaccination when a vaccine becomes available.more » « less