skip to main content


Title: HINTS: Citation Time Series Prediction for New Publications via Dynamic Heterogeneous Information Network Embedding
Accurate prediction of scientific impact is important for scientists, academic recommender systems, and granting organizations alike. Existing approaches rely on many years of leading citation values to predict a scientific paper’s citations (a proxy for impact), even though most papers make their largest contributions in the first few years after they are published. In this paper, we tackle a new problem: predicting a new paper’s citation time series from the date of publication (i.e., without leading values). We propose HINTS, a novel end-to-end deep learning framework that converts citation signals from dynamic heterogeneous information networks (DHIN) into citation time series. HINTS imputes pseudo-leading values for a paper in the years before it is published from DHIN embeddings, and then transforms these embeddings into the parameters of a formal model that can predict citation counts immediately after publication. Empirical analysis on two real-world datasets from Computer Science and Physics show that HINTS is competitive with baseline citation prediction models. While we focus on citations, our approach generalizes to other “cold start” time series prediction tasks where relational data is available and accurate prediction in early timestamps is crucial.  more » « less
Award ID(s):
1705169 1741634 1937599
NSF-PAR ID:
10259969
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
WWW '21: Proceedings of the Web Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A standard measure of the influence of a research paper is the number of times it is cited. However, papers may be cited for many reasons, and citation count offers limited information about the extent to which a paper affected the content of subsequent publications. We therefore propose a novel method to quantify linguistic influence in timestamped document collections. There are two main steps: first, identify lexical and semantic changes using contextual embeddings and word frequencies; second, aggregate information about these changes into per-document influence scores by estimating a high-dimensional Hawkes process with a low-rank parameter matrix. We show that this measure of linguistic influence is predictive of future citations: the estimate of linguistic influence from the two years after a paper’s publication is correlated with and predictive of its citation count in the following three years. This is demonstrated using an online evaluation with incremental temporal training/test splits, in comparison with a strong baseline that includes predictors for initial citation counts, topics, and lexical features. 
    more » « less
  2. Many publications on COVID-19 were released on preprint servers such as medRxiv and bioRxiv. It is unknown how reliable these preprints are, and which ones will eventually be published in scientific journals. In this study, we use crowdsourced human forecasts to predict publication outcomes and future citation counts for a sample of 400 preprints with high Altmetric score. Most of these preprints were published within 1 year of upload on a preprint server (70%), with a considerable fraction (45%) appearing in a high-impact journal with a journal impact factor of at least 10. On average, the preprints received 162 citations within the first year. We found that forecasters can predict if preprints will be published after 1 year and if the publishing journal has high impact. Forecasts are also informative with respect to Google Scholar citations within 1 year of upload on a preprint server. For both types of assessment, we found statistically significant positive correlations between forecasts and observed outcomes. While the forecasts can help to provide a preliminary assessment of preprints at a faster pace than traditional peer-review, it remains to be investigated if such an assessment is suited to identify methodological problems in preprints. 
    more » « less
  3. Proc. of 2023 IEEE 39th International Conference on Data Engineering (Ed.)
    Numerous papers get published all the time. However, some papers are born to be well-cited while others are not. In this work, we revisit the important problem of citation prediction, by focusing on the important yet realistic prediction on the average number of citations a paper will attract per year. The task is nonetheless challenging because many correlated factors underlie the potential impact of a paper, such as the prestige of its authors, the authority of its publishing venue, and the significance of the problems/techniques/applications it studies. To jointly model these factors, we propose to construct a heterogeneous publication network of nodes including papers, authors, venues, and terms. Moreover, we devise a novel heterogeneous graph neural network (HGN) to jointly embed all types of nodes and links, towards the modeling of research impact and its propagation. Beyond graph heterogeneity, we find it also important to consider the latent research domains, because the same nodes can have different impacts within different communities. Therefore, we further devise a novel cluster-aware (CA) module, which models all nodes and their interactions under the proper contexts of research domains. Finally, to exploit the information-rich texts associated with papers, we devise a novel text-enhancing (TE) module for automatic quality term mining. With the real-world publication data of DBLP, we construct three different networks and conduct comprehensive experiments to evaluate our proposed CATE-HGN framework, against various state-of-the-art models. Rich quantitative results and qualitative case studies demonstrate the superiority of CATEHGN in citation prediction on publication networks, and indicate its general advantages in various relevant downstream tasks on text-rich heterogeneous networks. 
    more » « less
  4. Information about individual publications associated with grants funded by NSF to support SES research from 2000-2015 (see "SES grants, 2000-2015"). For grants with ten or fewer publications, we included information about all available publications in this dataset. For grants with more than ten publications, we randomly selected ten to include in this dataset. CSV file with 13 columns and names in header row: "Grant ID" is the ID from the Dimensions platform (string); "Grant Number" is the NSF Award number (integer); "Publication Title" is the title of the paper (text); "Publication Year" is the year in which the paper was published (year); "Authors" is a list or abbreviated list of the authors of the paper (text); "Journal" is the name of the scientific journal or outlet in which the paper is published (text); "Interdis Rubric 1" is a metric representing the dataset authors' assessment for the level of interdisciplinarity represented by the paper (integer: “1” indicated social and natural science interdisciplinarity where both social and environmental conditions are measured or explored and/or author affiliations included departments across these disciplines; “2” indicated general interdisciplinarity between two or more different fields (that may both be within natural or social science); and “3” indicated single-disciplinarity) "Citations" is the count of citations the paper had received as of the date listed in "date for cite count", as reported in Google Scholar (integer); "date for cite count" is the date on which citation count for the paper was obtained (ddBBByy); "Abstract" is the text of the abstract of the paper, where available (text); "Notes" are any notes added by the authors of the dataset (text). 
    more » « less
  5. Citations have long been used to characterize the state of a scientific field and to identify influential works. However, writers use citations for different purposes, and this varied purpose influences uptake by future scholars. Unfortunately, our understanding of how scholars use and frame citations has been limited to small-scale manual citation analysis of individual papers. We perform the largest behavioral study of citations to date, analyzing how scientific works frame their contributions through different types of citations and how this framing affects the field as a whole. We introduce a new dataset of nearly 2,000 citations annotated for their function, and use it to develop a state-of-the-art classifier and label the papers of an entire field: Natural Language Processing. We then show how differences in framing affect scientific uptake and reveal the evolution of the publication venues and the field as a whole. We demonstrate that authors are sensitive to discourse structure and publication venue when citing, and that how a paper frames its work through citations is predictive of the citation count it will receive. Finally, we use changes in citation framing to show that the field of NLP is undergoing a significant increase in consensus. 
    more » « less