skip to main content


Search for: All records

Award ID contains: 1705169

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In 2011, we proposed PathSim to systematically define and compute similarity between nodes in a heterogeneous information network (HIN), where nodes and links are from different types. In the PathSim paper, we for the first time introduced HIN with general network schema and proposed the concept of meta-paths to systematically define new relation types between nodes. In this paper, we summarize the impact of PathSim paper in both academia and industry. We start from the algorithms that are based on meta-path-based feature engineering, then move on to the recent development in heterogeneous network representation learning, including both shallow network embedding and heterogeneous graph neural networks. In the end, we make the connection between knowledge graphs and HINs and discuss the implication of meta-paths in the symbolic reasoning scenario. Finally, we point out several future directions. 
    more » « less
  2. Answering complex First-Order Logical (FOL) queries on large-scale incomplete knowledge graphs (KGs) is an important yet challenging task. Recent advances embed logical queries and KG entities in the same space and conduct query answering via dense similarity search. However, most logical operators designed in previous studies do not satisfy the axiomatic system of classical logic, limiting their performance. Moreover, these logical operators are parameterized and thus require many complex FOL queries as training data, which are often arduous to collect or even inaccessible in most real-world KGs. We thus present FuzzQE, a fuzzy logic based logical query embedding framework for answering FOL queries over KGs. FuzzQE follows fuzzy logic to define logical operators in a principled and learning-free manner, where only entity and relation embeddings require learning. FuzzQE can further benefit from labeled complex logical queries for training. Extensive experiments on two benchmark datasets demonstrate that FuzzQE provides significantly better performance in answering FOL queries compared to state-of-the-art methods. In addition, FuzzQE trained with only KG link prediction can achieve comparable performance to those trained with extra complex query data. 
    more » « less
  3. null (Ed.)
    Accurate prediction of scientific impact is important for scientists, academic recommender systems, and granting organizations alike. Existing approaches rely on many years of leading citation values to predict a scientific paper’s citations (a proxy for impact), even though most papers make their largest contributions in the first few years after they are published. In this paper, we tackle a new problem: predicting a new paper’s citation time series from the date of publication (i.e., without leading values). We propose HINTS, a novel end-to-end deep learning framework that converts citation signals from dynamic heterogeneous information networks (DHIN) into citation time series. HINTS imputes pseudo-leading values for a paper in the years before it is published from DHIN embeddings, and then transforms these embeddings into the parameters of a formal model that can predict citation counts immediately after publication. Empirical analysis on two real-world datasets from Computer Science and Physics show that HINTS is competitive with baseline citation prediction models. While we focus on citations, our approach generalizes to other “cold start” time series prediction tasks where relational data is available and accurate prediction in early timestamps is crucial. 
    more » « less
  4. null (Ed.)