skip to main content


Title: The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth’s lower mantle
Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.  more » « less
Award ID(s):
2009935
NSF-PAR ID:
10259972
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The transport of hydrogen into Earth's deep interior may have an impact on lower mantle dynamics as well as on the seismic signature of subducted material. Due to the stability of the hydrous phasesδ‐AlOOH (delta phase), MgSiO2(OH)2(phase H), andε‐FeOOH at high temperatures and pressures, their solid solutions may transport significant amounts of hydrogen as deep as the core‐mantle boundary. We have constrained the equation of state, including the effects of a spin crossover in the Fe3+atoms, of (Al, Fe)‐phase H: Al0.84Fe3+0.07Mg0.02Si0.06OOH, using powder X‐ray diffraction measurements to 125 GPa, supported by synchrotron Mössbauer spectroscopy measurements on (Al, Fe)‐phase H andδ‐(Al, Fe)OOH. The changes in spin state of Fe3+in (Al, Fe)‐phase H results in a significant decrease in bulk sound velocity and occurs over a different pressure range (48–62 GPa) compared withδ‐(Al, Fe)OOH (32–40 GPa). Changes in axial compressibilities indicate a decrease in the compressibility of hydrogen bonds in (Al, Fe)‐phase H near 30 GPa, which may be associated with hydrogen bond symmetrization. The formation of (Al, Fe)‐phase H in subducted oceanic crust may contribute to scattering of seismic waves in the mid‐lower mantle (∼1,100–1,550 km). Accumulation of 1–4 wt.% (Al, Fe)‐phase H could reproduce some of the seismic signatures of large, low seismic‐velocity provinces. Our results suggest that changes in the electronic structure of phases in the (δ‐AlOOH)‐(MgSiO2(OH)2)‐(ε‐FeOOH) solid solution are sensitive to composition and that the presence of these phases in subducted oceanic crust could be seismically detectable throughout the lower mantle.

     
    more » « less
  2. Abstract

    The stability, structure, and elastic properties of pyrite‐type (FeS2structured) FeO2H were determined using density functional theory‐based computations with an internally consistent Coulombic self‐interaction term (Ueff). The properties of pyrite‐type FeO2H are compared to that of pyrite‐type AlO2H, with which it likely forms a solid solution at high temperature, as well as the respective lower pressure CaCl2‐type polymorphs of both endmembers:ϵ‐FeOOH andδ‐AlOOH. Due to substantial differences in the CaCl2‐type → pyrite‐type structural transition pressures of these endmembers, the stabilities of the (Al,Fe)O2H solid solution polymorphs are anticipated to be compositionally driven at lower mantle pressures. As the geophysical properties of (Al,Fe)OOH are structurally dependant, interpretations regarding the contribution of pyrite‐type FeO2H to seismically observed features must take into account the importance of this broad phase loop. With this in mind, Fe‐rich pyrite‐type (Al,Fe)OOH may coexist with Al‐dominant CaCl2‐typeδ‐(Al,Fe)OOH in the deep Earth. Furthermore, pyrite‐type (Al0.5–0.6,Fe0.4–0.5)O2H can reproduce the reduced compressional and shear velocities characteristic of seismically observed ultra low velocity zones in the Earth's lowermost mantle while Al‐dominant but Fe‐bearing CaCl2‐typeδ‐(Al,Fe)OOH may contribute to large low shear velocity provinces.

     
    more » « less
  3. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

     
    more » « less
  4. Abstract

    High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.

     
    more » « less
  5. null (Ed.)
    Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa below and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle. 
    more » « less