skip to main content

This content will become publicly available on December 1, 2022

Title: The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth’s lower mantle
Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.
Authors:
; ; ; ; ; ; ;
Award ID(s):
2009935
Publication Date:
NSF-PAR ID:
10259972
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa belowmore »and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle.« less
  2. Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+‐Al3+ coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields V 0 = 172.1(4) Å3, K 0 = 229(4) GPa with K 0′ = 4(fixed). The calculated bulk sound velocitymore »of the FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+ substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing ~6% of Fe3+ cations exchanged with Al3+ and underwent the high‐spin to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+ increased gradually with pressure and reached 17‐31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+ fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.« less
  3. Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3-SiO2-H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. High-pressure and high-temperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use first-principles simulations based on density functional theory to exploremore »the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H···O configurations, which we delineate as a transition from a low-pressure to a high-pressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% at zero pressures. Our results also indicate that the phase egg has one of the fastest bulk sound velocities (vP and vS) compared to other hydrous aluminous phases in the ASH ternary, which include topaz-OH, phase Pi, and d-AlOOH. However, the bulk sound velocity of phase egg is slower than that of stishovite. At depths corresponding to the base of mantle transition zone, phase egg decomposes to a mixture of d-AlOOH and stishovite. The changes in compressional DvP and shear DvS velocity associated with the decomposition is ~0.42% and –1.23%, respectively. Although phase egg may be limited to subducted sediments, it could hold several weight percentages of water along a normal mantle geotherm.« less
  4. The degree to which the Earth’s mantle stores and cycles water in excess of the storage capacity of nominally anhydrous minerals is dependent upon the stability of hydrous phases under mantle-relevant pressures, temperatures, and compositions. Two hydrous phases, phase D and phase H, are stable to the pressures and temperatures of the Earth’s lower mantle, suggesting that the Earth’s lower mantle may participate in the cycling of water. We build on our prior work of density functional theory calculations on phase H with the stability, structure, and bonding of hydrous phases D, and we predict the aluminum partitioning with Hmore »in the Al 2 O 3 -SiO 2 -MgO-H 2 O system. We address the solid solutions through a statistical sampling of site occupancy and calculation of the partition function from the grand canonical ensemble. We show that each phase has a wide solid solution series between MgSi 2 O 6 H 2 -Al 2 SiO 6 H 2 and MgSiO 4 H 2 -2 δ AlOOH + SiO 2 , in which phase H is more aluminum rich than phase D at a given bulk composition. We predict that the addition of Al to both phases D and H stabilizes each phase to higher temperatures through additional configurational entropy. While we have shown that phase H does not exhibit symmetric hydrogen bonding at high pressure, we report here that phase D undergoes a gradual increase in the number of symmetric H-bonds beginning at ∼30 GPa, and it is only ∼50% complete at 60 GPa.« less
  5. Abstract Constraining the accommodation, distribution, and circulation of hydrogen in the Earth's interior is vital to our broader understanding of the deep Earth due to the significant influence of hydrogen on the material and rheological properties of minerals. Recently, a great deal of attention has been paid to the high-pressure polymorphs of FeOOH (space groups P21nm and Pnnm). These structures potentially form a hydrogen-bearing solid solution with AlOOH and phase H (MgSiO4H2) that may transport water (OH–) deep into the Earth's lower mantle. Additionally, the pyrite-type polymorph (space group Pa3 of FeOOH), and its potential dehydration have been linked tomore »phenomena as diverse as the introduction of hydrogen into the outer core (Nishi et al. 2017), the formation of ultralow-velocity zones (ULVZs) (Liu et al. 2017), and the Great Oxidation Event (Hu et al. 2016). In this study, the high-pressure evolution of FeOOH was re-evaluated up to ~75 GPa using a combination of synchrotron-based X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and optical absorption spectroscopy. Based on these measurements, we report three principal findings: (1) pressure-induced changes in hydrogen bonding (proton disordering or hydrogen bond symmetrization) occur at substantially lower pressures in ε-FeOOH than previously reported and are unlikely to be linked to the high-spin to low-spin transition; (2) ε-FeOOH undergoes a 10% volume collapse coincident with an isostructural Pnnm → Pnnm transition at approximately 45 GPa; and (3) a pressure-induced band gap reduction is observed in FeOOH at pressures consistent with the previously reported spin transition (40 to 50 GPa).« less