skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination and Dissection of DNA-Binding Specificity for the Thermus thermophilus HB8 Transcriptional Regulator TTHB099
Transcription factors (TFs) have been extensively researched in certain well-studied organisms, but far less so in others. Following the whole-genome sequencing of a new organism, TFs are typically identified through their homology with related proteins in other organisms. However, recent findings demonstrate that structurally similar TFs from distantly related bacteria are not usually evolutionary orthologs. Here we explore TTHB099, a cAMP receptor protein (CRP)-family TF from the extremophile Thermus thermophilus HB8. Using the in vitro iterative selection method Restriction Endonuclease Protection, Selection and Amplification (REPSA), we identified the preferred DNA-binding motif for TTHB099, 5′–TGT(A/g)NBSYRSVN(T/c)ACA–3′, and mapped potential binding sites and regulated genes within the T. thermophilus HB8 genome. Comparisons with expression profile data in TTHB099-deficient and wild type strains suggested that, unlike E. coli CRP (CRPEc), TTHB099 does not have a simple regulatory mechanism. However, we hypothesize that TTHB099 can be a dual-regulator similar to CRPEc.  more » « less
Award ID(s):
1714778
PAR ID:
10259978
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
21
Issue:
21
ISSN:
1422-0067
Page Range / eLocation ID:
7929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transcription regulatory proteins, also known as transcription factors, function as molecular switches modulating the first step in gene expression, transcription initiation. Cyclic-AMP receptor proteins (CRPs) and fumarate and nitrate reduction regulators (FNRs) compose the CRP/FNR superfamily of transcription factors, regulating gene expression in response to a spectrum of stimuli. In the present work, a reverse-genetic methodology was applied to the study of TTHA1359, one of four CRP/FNR superfamily transcription factors in the model organism Thermus thermophilus HB8. Restriction Endonuclease Protection, Selection, and Amplification (REPSA) followed by next-generation sequencing techniques and bioinformatic motif discovery allowed identification of a DNA-binding consensus for TTHA1359, 5′–AWTGTRA(N)6TYACAWT–3′, which TTHA1359 binds to with high affinity. By bioinformatically mapping the consensus to the T. thermophilus HB8 genome, several potential regulatory TTHA1359-binding sites were identified and validated in vitro. The findings contribute to the knowledge of TTHA1359 regulatory activity within T. thermophilus HB8 and demonstrate the effectiveness of a reverse-genetic methodology in the study of putative transcription factors. 
    more » « less
  2. Transcription factors are proteins that recognize specific DNA sequences and affect local transcriptional processes. They are the primary means by which all organisms control specific gene expression. Understanding which DNA sequences a particular transcription factor recognizes provides important clues into the set of genes that they regulate and, through this, their potential biological functions. Insights may be gained through homology searches and genetic means. However, these approaches can be misleading, especially when comparing distantly related organisms or in cases of complicated transcriptional regulation. In this work, we used a biochemistry-based approach to determine the spectrum of DNA sequences specifically bound by the Thermus thermophilus HB8 TetR-family transcription factor TTHB023. The consensus sequence 5′–(a/c)Y(g/t)A(A/C)YGryCR(g/t)T(c/a)R(g/t)–3′ was found to have a nanomolar binding affinity with TTHB023. Analyzing the T. thermophilus HB8 genome, several TTHB023 consensus binding sites were mapped to the promoters of genes involved in fatty acid biosynthesis. Notably, some of these were not identified previously through genetic approaches, ostensibly given their potential co-regulation by the Thermus thermophilus HB8 TetR-family transcriptional repressor TTHA0167. Our investigation provides additional evidence supporting the usefulness of a biochemistry-based approach for characterizing putative transcription factors, especially in the case of cooperative regulation. 
    more » « less
  3. Advances in genomic sequencing have allowed the identification of a multitude of genes encoding putative transcriptional regulatory proteins. Lacking, often, is a fuller understanding of the biological roles played by these proteins, the genes they regulate or regulon. Conventionally this is achieved through a genetic approach involving putative transcription factor gene manipulation and observations of changes in an organism’s transcriptome. However, such an approach is not always feasible or can yield misleading findings. Here, we describe a biochemistry-centric approach, involving identification of preferred DNA-binding sequences for the Thermus thermophilus HB8 transcriptional repressor TTHA0973 using the selection method Restriction Endonuclease Protection, Selection and Amplification (REPSA), massively parallel sequencing, and bioinformatic analyses. We identified a consensus TTHA0973 recognition sequence of 5′–AACnAACGTTnGTT–3′ that exhibited nanomolar binding affinity. This sequence was mapped to several sites within the T. thermophilus HB8 genome, a subset of which corresponded to promoter regions regulating genes involved in phenylacetic acid degradation. These studies further demonstrate the utility of a biochemistry-centric approach for the facile identification of potential biological functions for orphan transcription factors in a variety of organisms. 
    more » « less
  4. Champion, Patricia A. (Ed.)
    ABSTRACT D-block metal cations are essential for most biological processes; however, excessive metal exposure can be deleterious to the survival of microorganisms. To tightly control heavy metal regulation, prokaryotic organisms have developed several mechanisms to sense and adapt to changes in intracellular and extracellular metal concentrations. The ferric uptake regulator superfamily of transcription factors associates with DNA when complexed with a regulatory metal cofactor and often represses the transcription of genes involved in metal transport, thus providing a genomic response to an environmental stressor. Although extensively studied in mesothermic organisms, there is little information describing ferric uptake regulator homologs in thermophiles. In this study, we biochemically characterize the ferric uptake regulator homolog TTHA1292 in the extreme thermophile Thermus thermophilus HB8. We identify the preferred DNA-binding sequence of TTHA1292 using the combinatorial approach, restriction endonuclease, protection, selection, and amplification (REPSA). We map this sequence to the Thermus thermophilus HB8 genome and identify the TTHA1292 transcription regulatory network, which includes the zinc ABC transporter subunit genes TTHA0596 and TTHA0453/4 . We formally implicate TTHA1292 as a zinc uptake regulator and show that zinc coordination is critical for the multimerization of TTHA1292 dimers on DNA in vitro and transcription repression in vivo . IMPORTANCE Discovering how organisms sense and adapt to their environments is paramount to understanding biology. Thermophilic organisms have adapted to survive at elevated temperatures (>50°C); however, our understanding of how these organisms adapt to changes in their environment is limited. In this study, we identify a zinc uptake regulator in the extreme thermophile Thermus thermophilus HB8 that provides a genomic response to fluctuations in zinc availability. These results provide insights into thermophile biology, as well as the zinc uptake regulator family of proteins. 
    more » « less
  5. Lindemann, Stephen R. (Ed.)
    ABSTRACT Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae , nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae , and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria , Flavobacteriales , and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia , this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance. 
    more » « less