skip to main content


Title: Rapid Quantification of Nanosphere Lithography Packing Defects Using Scanning Electron Microscopy Edge Effects
  more » « less
Award ID(s):
1761395 1761273
NSF-PAR ID:
10260463
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (RRL) – Rapid Research Letters
Volume:
14
Issue:
11
ISSN:
1862-6254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND

    Umbilical cord blood has become an important source of hematopoietic stem and progenitor cells for therapeutic applications. However, cord blood banking (CBB) grapples with issues related to economic viability, partially due to high discard rates of cord blood units (CBUs) that lack sufficient total nucleated cells for storage or therapeutic use. Currently, there are no methods available to assess the likelihood of CBUs meeting storage criteria noninvasively at the collection site, which would improve CBB efficiency and economic viability.

    MATERIALS AND METHODS

    To overcome this limitation, we apply a novel label‐free optical imaging method, called quantitative oblique back‐illumination microscopy (qOBM), which yields tomographic phase and absorption contrast to image blood inside collection bags. An automated segmentation algorithm was developed to count white blood cells and red blood cells (RBCs) and assess hematocrit. Fifteen CBUs were measured.

    RESULTS

    qOBM clearly differentiates between RBCs and nucleated cells. The cell‐counting analysis shows an average error of 13% compared to hematology analysis, with a near‐perfect, one‐to‐one relationship (slope = 0.94) and strong correlation coefficient (r = 0.86). Preliminary results to assess hematocrit also show excellent agreement with expected values. Acquisition times to image a statistically significant number of cells per CBU were approximately 1 minute.

    CONCLUSION

    qOBM exhibits robust performance for quantifying blood inside collection bags. Because the approach is automated and fast, it can potentially quantify CBUs within minutes of collection, without breaching the CBUs' sterile environment. qOBM can reduce costs in CBB by avoiding processing expenses of CBUs that ultimately do not meet storage criteria.

     
    more » « less
  2. Deterministic lateral displacement (DLD) is a microfluidic micro/nanopost array-based technique for size-based particle separations. A key challenge in scaling DLD for handling smaller particles is that creating such “nanoDLD” arrays can be cost-intensive with substantial technical hurdles. To circumvent such issues, here we explore a new “hexagonally arranged triangles (HAT)” DLD geometry that is based on patterns associated with nanosphere lithography (NSL). Finite element simulations and preliminary experiments with 0.86 μm and 4.7 μm particles suggest effective separation capabilities of the HAT-DLD approach, marking an important first step toward new classes of nanoDLD arrays fabricated through bottom-up, self-assembly-based NSL. 
    more » « less
  3. null (Ed.)
    Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either “top-down” lithographic or “bottom-up” self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications. 
    more » « less
  4. Summary Lay Description

    Particles are widely used as probes in life sciences through their motions. In single molecule techniques such as optical tweezers and magnetic tweezers, microbeads are used to study intermolecular or intramolecular interactions via beads tracking. Also tracking multiple beads’ motions could study cell–cell or cell–ECM interactions in traction force microscopy. Therefore, particle tracking is of key important during these researches. However, parallel 3D multiple particle tracking in real‐time with high resolution is a challenge either due to the algorithm or the program. Here, we combine the performance of CPU and CUDA‐based GPU to make a hybrid implementation for particle tracking. In this way, a speedup of 137 is obtained compared the program before only with CPU without loss of accuracy. Moreover, we improve and build a new centrifugal force microscope for multiple single molecule force spectroscopy research in parallel. Then we employed our program into centrifugal force microscope for DNA stretching study. Our results not only demonstrate the application of this program in single molecule techniques, also indicate the capability of multiple single molecule study with centrifugal force microscopy.

     
    more » « less
  5. Abstract Motivation

    Recent advances in genomics and precision medicine have been made possible through the application of high throughput sequencing (HTS) to large collections of human genomes. Although HTS technologies have proven their use in cataloging human genome variation, computational analysis of the data they generate is still far from being perfect. The main limitation of Illumina and other popular sequencing technologies is their short read length relative to the lengths of (common) genomic repeats. Newer (single molecule sequencing – SMS) technologies such as Pacific Biosciences and Oxford Nanopore are producing longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. Unfortunately, because of their high sequencing error rate, reads generated by these technologies are very difficult to work with and cannot be used in many of the standard downstream analysis pipelines. Note that it is not only difficult to find the correct mapping locations of such reads in a reference genome, but also to establish their correct alignment so as to differentiate sequencing errors from real genomic variants. Furthermore, especially since newer SMS instruments provide higher throughput, mapping and alignment need to be performed much faster than before, maintaining high sensitivity.

    Results

    We introduce lordFAST, a novel long-read mapper that is specifically designed to align reads generated by PacBio and potentially other SMS technologies to a reference. lordFAST not only has higher sensitivity than the available alternatives, it is also among the fastest and has a very low memory footprint.

    Availability and implementation

    lordFAST is implemented in C++ and supports multi-threading. The source code of lordFAST is available at https://github.com/vpc-ccg/lordfast.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less