Abstract Photonic crystals (PCs) constructed from colloidal building blocks have attracted increasing attention because their brilliant structural colors may find broad applications in paints, sensors, displays, and security devices. However, producing high‐quality structural colors on flexible substrates such as textiles in an efficient and scalable manner remains a challenge. Here a robust and ultrafast approach to produce industrial‐scale colloidal PCs by the shear‐induced assembly of liquid colloidal crystals of polystyrene beads pre‐formed spontaneously over a critical volume fraction is demonstrated. The pre‐crystallization of colloidal crystals allows their efficient assembly into large‐scale PCs on flexible fabric substrates under shear force. Further, by programming the wettability of the fabric substrate with hydrophilic–hydrophobic regions, this shear‐based assembly strategy can conveniently generate pre‐designed patterns of complex structural colors. This assembly strategy brings structural coloration to flexible fabrics at a scale suitable for commercial applications; therefore, it holds the potential to revolutionize the coloration technology in the textile industry.
more »
« less
From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either “top-down” lithographic or “bottom-up” self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
more »
« less
- Award ID(s):
- 1810485
- PAR ID:
- 10282421
- Date Published:
- Journal Name:
- Chemical Society Reviews
- Volume:
- 50
- Issue:
- 10
- ISSN:
- 0306-0012
- Page Range / eLocation ID:
- 5898 to 5951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Materials made by directed self‐assembly of colloids can exhibit a rich spectrum of optical phenomena, including photonic bandgaps, coherent scattering, collective plasmonic resonance, and wave guiding. The assembly of colloidal particles with spatial selectivity is critical for studying these phenomena and for practical device fabrication. While there are well‐established techniques for patterning colloidal crystals, these often require multiple steps including the fabrication of a physical template for masking, etching, stamping, or directing dewetting. Here, the direct‐writing of colloidal suspensions is presented as a technique for fabrication of iridescent colloidal crystals in arbitrary 2D patterns. Leveraging the principles of convective assembly, the process can be optimized for high writing speeds (≈600 µm s−1) at mild process temperature (30 °C) while maintaining long‐range (cm‐scale) order in the colloidal crystals. The crystals exhibit structural color by grating diffraction, and analysis of diffraction allows particle size, relative grain size, and grain orientation to be deduced. The effect of write trajectory on particle ordering is discussed and insights for developing 3D printing techniques for colloidal crystals via layer‐wise printing and sintering are provided.more » « less
-
Exotic structures with interesting physical and chemical properties can be achieved by self-organizing engineered building blocks. The central aim for self-assembly is to precisely control the position and orientation of individual building blocks. In this work, we use topological defects (disclinations) in nematic liquid crystals as templates to direct the self-assembly of colloidal particles into designable 3D structures. By photopatterning preprogrammed molecular orientations at two confining surfaces, we created pre-designable disclination networks and characterized their interactions with spherical colloidal particles. We find that colloidal particles are attracted to different disclinations depending on the orientation of the point defect (elastic dipole) around the colloids. We demonstrate that the positions, network structures, and orientation of the elastic dipoles of the colloidal chains can be pre-designed and reconfigured with remote illumination of polarized light.more » « less
-
Abstract Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro‐optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two‐step photo‐exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out‐of‐plane orientation. The method enables smoothly varying orientational patterns with sub‐micrometer precision. As a demonstration, the setup is used to create gradient‐index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next‐generation photonic devices and actuated materials, with potential applications in molecular self‐assembly, re‐configurable optics, and responsive matter.more » « less
-
Significance Self-assembly is one of the central themes in biologically controlled synthesis, and it also plays a pivotal role in fabricating a variety of advanced engineering materials. In particular, evaporation-induced self-assembly of colloidal particles enables versatile fabrication of highly ordered two- or three-dimensional nanostructures for optical, sensing, catalytic, and other applications. While it is well known that this process results in the formation of the face-centered cubic (fcc) lattice with the close-packed {111} plane parallel to the substrate, the crystallographic texture development of colloidal crystals is less understood. In this study, we show that the preferred <110> growth in the fcc colloidal crystals synthesized through evaporation-induced assembly is achieved through a gradual crystallographic rotation facilitated by mechanical stress-induced geometrically necessary dislocations.more » « less
An official website of the United States government

