skip to main content

Title: Lava crickets ( Caconemobius spp.) on Hawai'i Island: first colonisers or persisters in extreme habitats?

1. Primary succession after a volcanic eruption is a major ecological process, but relatively little is known about insects that colonise barren lava before plants become established.

2. On Hawai'i Island, the endemic cricket,Caconemobius foriGurney & Rentz, 1978, is known as the first multicellular life form to colonise lava after an eruption from Kīlauea Volcano. In the Kona region, a congener,Caconemobius anahuluOtte, 1994 inhabits unvegetated lava flows from Hualālai Volcano, but little has been documented about its distribution.

3. Our aim was to characterise the presence/absence ofCaconemobiusspp.across lava flows that are largely unvegetated, but differ in age since eruption and connectivity to older flows. We used baited live traps to survey 9 month–50 year‐old Kīlauea lava flows forC. fori, and ∼220 year‐old Hualālai lava flows forC. anahulu.

4. We found no evidence thatC. forihas colonised the Kīlauea flows from the 2018 eruption. However, we did discover thatC. foriwas persistent and widespread on Kīlauea lava up to 50 years old within Hawai'i Volcanos National Park. We also capturedC. anahuluacross much of the Hualālai lava flows we surveyed in Kona.

5. We demonstrated thatC. forido not always arrive on new lava within months after an eruption, in contrast to previous reports, and that bothC. foriandC. anahulucan remain on lava longer than previously appreciated. Vegetation successional state may be more important than true age for the persistence of these endemic crickets.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Ecological Entomology
Page Range / eLocation ID:
p. 505-513
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Lava flows present a significant natural hazard to communities around volcanoes and are typically slow-moving (<1 to 5 cm s−1) and laminar. Recent lava flows during the 2018 eruption of Kīlauea volcano, Hawai'i, however, reached speeds as high as 11 m s−1 and were transitional to turbulent. The Kīlauea flows formed a complex network of braided channels departing from the classic rectangular channel geometry often employed by lava flow models. To investigate these extreme dynamics we develop a new lava flow model that incorporates nonlinear advection and a nonlinear expression for the fluid viscosity. The model makes use of novel discontinuous Galerkin (DG) finite-element methods and resolves complex channel geometry through the use of unstructured triangular meshes. We verify the model against an analytic test case and demonstrate convergence rates of P+1/2 for polynomials of degree 𝒫. Direct observations recorded by unoccupied aerial systems (UASs) during the Kīlauea eruption provide inlet conditions, constrain input parameters, and serve as a benchmark for model evaluation. 
    more » « less
  2. Abstract

    Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kīlauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kīlauea environment. We also discovered viableMycobacterium avium, Mycobacterium abscessus, andMycobacterium intracellularesubsp.chimaeraon volcanic ash collected during the 2018 Kīlauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kīlauea‐derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter‐island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kīlauea‐derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.

    more » « less
  3. Abstract

    About 14.5 months after the 2018 eruption and summit collapse of Kīlauea Volcano, Hawaiʻi, liquid water started accumulating in the deepened summit crater, forming a lake that attained 51 m depth before rapidly boiling off on December 20, 2020, when an eruption from the crater wall poured lava into the lake. Modeling the growth of the crater lake at Kīlauea summit is important for assessing the potential for explosive volcanism. Our current understanding of the past 2500 years of eruptive activity at Kīlauea suggests a slight dominance of explosive behavior over effusive. The deepened summit crater and presence of the crater lake in 2019 raised renewed concerns about explosive activity. Groundwater models using hydraulic‐property data from a nearby drillhole successfully forecast the timing and rate of lake filling. Here we compare the groundwater‐model predictions with observational data through the demise of the crater lake, examine the implications for local water‐table configuration, consider the potential role of evaporation and recharge (neglected in previous models), and briefly discuss the energetics of the rapid boil‐off. This post audit of groundwater‐flow models of Kīlauea summit shows that simple models can sometimes be used effectively to simulate complex settings such as volcanoes.

    more » « less
  4. Changes in magma chemistry that affect eruptive behavior occur during many volcanic eruptions, but typical analytical techniques are too slow to contribute to hazard monitoring. We used rapid energy-dispersive x-ray fluorescence analysis to measure diagnostic elements in lava samples within a few hours of collection during the 2018 Kīlauea eruption. The geochemical data provided important information for field crews and civil authorities in advance of changing hazards during the eruption. The appearance of hotter magma was recognized several days before the onset of voluminous eruptions of fast-moving flows that destroyed hundreds of homes. We identified, in near real-time, interactions between older, colder, stored magma—including the unexpected eruption of andesite—and hotter magma delivered during dike emplacement.

    more » « less
  5. From June to August 2018, the eruption of Kīlauea volcano on the island of Hawai‘i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients. 
    more » « less