skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lava crickets ( Caconemobius spp.) on Hawai'i Island: first colonisers or persisters in extreme habitats?
1. Primary succession after a volcanic eruption is a major ecological process, but relatively little is known about insects that colonise barren lava before plants become established. 2. On Hawai'i Island, the endemic cricket,Caconemobius foriGurney & Rentz, 1978, is known as the first multicellular life form to colonise lava after an eruption from Kīlauea Volcano. In the Kona region, a congener,Caconemobius anahuluOtte, 1994 inhabits unvegetated lava flows from Hualālai Volcano, but little has been documented about its distribution. 3. Our aim was to characterise the presence/absence ofCaconemobiusspp.across lava flows that are largely unvegetated, but differ in age since eruption and connectivity to older flows. We used baited live traps to survey 9 month–50 year‐old Kīlauea lava flows forC. fori, and ∼220 year‐old Hualālai lava flows forC. anahulu. 4. We found no evidence thatC. forihas colonised the Kīlauea flows from the 2018 eruption. However, we did discover thatC. foriwas persistent and widespread on Kīlauea lava up to 50 years old within Hawai'i Volcanos National Park. We also capturedC. anahuluacross much of the Hualālai lava flows we surveyed in Kona. 5. We demonstrated thatC. forido not always arrive on new lava within months after an eruption, in contrast to previous reports, and that bothC. foriandC. anahulucan remain on lava longer than previously appreciated. Vegetation successional state may be more important than true age for the persistence of these endemic crickets.  more » « less
Award ID(s):
1914611
PAR ID:
10265618
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
46
Issue:
3
ISSN:
0307-6946
Format(s):
Medium: X Size: p. 505-513
Size(s):
p. 505-513
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Lava flows present a significant natural hazard to communities around volcanoes and are typically slow-moving (<1 to 5 cm s−1) and laminar. Recent lava flows during the 2018 eruption of Kīlauea volcano, Hawai'i, however, reached speeds as high as 11 m s−1 and were transitional to turbulent. The Kīlauea flows formed a complex network of braided channels departing from the classic rectangular channel geometry often employed by lava flow models. To investigate these extreme dynamics we develop a new lava flow model that incorporates nonlinear advection and a nonlinear expression for the fluid viscosity. The model makes use of novel discontinuous Galerkin (DG) finite-element methods and resolves complex channel geometry through the use of unstructured triangular meshes. We verify the model against an analytic test case and demonstrate convergence rates of P+1/2 for polynomials of degree 𝒫. Direct observations recorded by unoccupied aerial systems (UASs) during the Kīlauea eruption provide inlet conditions, constrain input parameters, and serve as a benchmark for model evaluation. 
    more » « less
  2. Abstract Maunaloa—the largest active volcano on Earth—erupted in 2022 after its longest known repose period (~38 years) and two decades of volcanic unrest. This eruptive hiatus at Maunaloa encompasses most of the ~35-year-long Puʻuʻōʻō eruption of neighboring Kīlauea, which ended in 2018 with a collapse of the summit caldera and an unusually voluminous (~1 km3) rift eruption. A long-term pattern of such anticorrelated eruptive behavior suggests that a magmatic connection exists between these volcanoes within the asthenospheric mantle source and melting region, the lithospheric mantle, and/or the volcanic edifice. The exact nature of this connection is enigmatic. In the past, the distinct compositions of lavas from Kīlauea and Maunaloa were thought to require completely separate magma pathways from the mantle source of each volcano to the surface. Here, we use a nearly 200-yr record of lava chemistry from both volcanoes to demonstrate that melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Maunaloa on a timescale of decades. This process led to a correlated temporal variation in 206Pb/204Pb and 87Sr/86Sr at these volcanoes since the early 19th century with each becoming more active when it received melt from the shared source. Ratios of highly over moderately incompatible trace elements (e.g. Nb/Y) at Kīlauea reached a minimum from ~2000 to 2010, which coincides with an increase in seismicity and inflation at the summit of Maunaloa. Thereafter, a reversal in Nb/Y at Kīlauea signals a decline in the degree of mantle partial melting at this volcano and suggests that melt from the shared source is now being diverted from Kīlauea to Maunaloa for the first time since the early to mid-20th century. These observations link a mantle-related shift in melt generation and transport at Kīlauea to the awakening of Maunaloa in 2002 and its eruption in 2022. Monitoring of lava chemistry is a potential tool that may be used to forecast the behavior (e.g. eruption rate and frequency) of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Maunaloa is likely if the temporal increase in Nb/Y continues at Kīlauea. 
    more » « less
  3. Abstract We explore the potential for repeat‐pass SAR Interferometry (InSAR) correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the United States Geological Survey, and because Hawai'i is a SAR supersite, where space agencies have offered open radar data sets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS‐2 (L‐band), Sentinel‐1 (C‐band), and COSMO‐SkyMed (X‐band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post‐emplacement contraction of flows. Post‐emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat‐pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin. 
    more » « less
  4. Changes in magma chemistry that affect eruptive behavior occur during many volcanic eruptions, but typical analytical techniques are too slow to contribute to hazard monitoring. We used rapid energy-dispersive x-ray fluorescence analysis to measure diagnostic elements in lava samples within a few hours of collection during the 2018 Kīlauea eruption. The geochemical data provided important information for field crews and civil authorities in advance of changing hazards during the eruption. The appearance of hotter magma was recognized several days before the onset of voluminous eruptions of fast-moving flows that destroyed hundreds of homes. We identified, in near real-time, interactions between older, colder, stored magma—including the unexpected eruption of andesite—and hotter magma delivered during dike emplacement. 
    more » « less
  5. Abstract Basaltic lava flows can be highly destructive. Forecasting the future path and/or behavior of an active lava flow is challenging because topography is often poorly constrained and lava has a complex rheology and emplacement history. Preserved lavas are an important source of information which, combined with observations of active flows, underpins conceptual models of lava flow emplacement. However, the value of preserved lavas is limited because pre-eruptive topography and, thus, syn-eruptive lava flow geometry are usually not known. Here, we use tree-mold data to constrain pre-eruptive topography and syn-eruptive lava flow geometry of the July 1974 flow of Kīlauea (USA). Tree molds, which are formed after advancing lava encloses standing trees, preserve the lava inundation height and the final preserved thickness of lava. We used data from 282 tree molds to reconstruct the temporal and spatial evolution of the ~ 2.1 km-long July 1974 flow. The tree mold dataset yields a detailed dynamic picture of staged emplacement, separated by intervals of ponding. In some ponded areas, flow depth during emplacement (~ 5 m) was twice the preserved thickness of the final lava (2–3 m). Drainage of the ponds led to episodic surges in flow advancement, decoupled from fluctuations in vent discharge rate. We infer that the final breakout occurred after the cessation of fountaining. Such complex emplacement histories may be common for pāhoehoe lavas at Kīlauea and elsewhere in situations where the terrain is of variable slope, and/or where lava is temporarily perched and stored. 
    more » « less