skip to main content


Title: A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
Abstract. Lava flows present a significant natural hazard to communities around volcanoes and are typically slow-moving (<1 to 5 cm s−1) and laminar. Recent lava flows during the 2018 eruption of Kīlauea volcano, Hawai'i, however, reached speeds as high as 11 m s−1 and were transitional to turbulent. The Kīlauea flows formed a complex network of braided channels departing from the classic rectangular channel geometry often employed by lava flow models. To investigate these extreme dynamics we develop a new lava flow model that incorporates nonlinear advection and a nonlinear expression for the fluid viscosity. The model makes use of novel discontinuous Galerkin (DG) finite-element methods and resolves complex channel geometry through the use of unstructured triangular meshes. We verify the model against an analytic test case and demonstrate convergence rates of P+1/2 for polynomials of degree 𝒫. Direct observations recorded by unoccupied aerial systems (UASs) during the Kīlauea eruption provide inlet conditions, constrain input parameters, and serve as a benchmark for model evaluation.  more » « less
Award ID(s):
1654588
NSF-PAR ID:
10321175
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
6
ISSN:
1991-9603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Continental flood basalts (CFBs) are dominated by two characteristic lava morphologies. The first type, referred to as ‘compound’ or ‘hummocky pāhoehoe,’ exhibits pillow-like lava flow lobes with cross-sections of ~ 0.5–2 m and thin chilled margins. The second type, referred to as ‘simple’ or ‘sheet lobes’ preserves more massive, inflated flow interiors that are laterally continuous on scales of 100s of meters to kilometers. Previous hypotheses suggest that two factors may contribute to stratigraphic changes in morphology from ‘compound’ to ‘simple’: 1) increased eruption duration or 2) increased extrusion rate. We test the hypothesis that a large increase in extrusion rate would result in flow morphology transitioning from multiple small lobes to inflated sheet lobes due to a shift in flow propagation from intraflow resurfacing-dominated to marginal breakout-dominated. Using polyethylene glycol (PEG) wax extruded into a circular water-filled tank 130 cm in diameter, we produced larger, more complex experiments than previous studies. Our efforts simulated more complex lava fields which change flow morphology with distance from the eruptive vent, characteristic of CFBs. Whereas previous PEG studies linked extrusion rate to near-source surface morphologies, our experiments evaluated how flow propagation mechanisms change with variable extrusion rate and distance from the source. Two flow propagation styles were identified: 1) resurfacing, in which molten material breaks through the surface of a flow and covers the older crust and 2) marginal breakouts, in which molten material extends beyond the crust at the active distal margin of the flow. Flows that propagated via marginal breakouts were found to have lower proportions of resurfaced area and vice versa. We show that significant resurfacing is needed to preserve internal chilled boundaries within a flow and a low-extrusion-rate surface morphology, whereas marginal breakout-dominated flows tend to inflate the pillow-like surface morphology preserving a massive interior at great distances from the vent. Higher and more steady extrusion rates tend to decrease the extent of resurfacing and increase the distance between the source and preserved low-extrusion-rate surface morphologies. We find that an extrusion rate increase equivalent to a jump in the extrusion rate scaling factor, Ψ value, from < 1 to > 5 would be necessary to ensure a switch from resurfacing-dominated lobate morphologies to marginal breakout-dominated propagation style. This amounts to a factor of 125 increase in effusion rate for fissure eruptions and a factor of 625 for point source eruptions, assuming no change in vent geometry. This would be equivalent to an effusion rate of 0.2 m3/s, as documented in 1987–1990 Kīlauea eruptions, increasing to 125 m3/s, which was commonly measured during the 2014 Holuhraun eruption in Iceland and the 2018 eruption at Leilani Estates in Hawai‘i. Thus, we propose that continental flood basalts do not require unusually large effusion rates, but instead were active for a longer and more consistent time period than smaller-volume eruptions.

     
    more » « less
  2. The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone.

    Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less
  3. 1. Primary succession after a volcanic eruption is a major ecological process, but relatively little is known about insects that colonise barren lava before plants become established.

    2. On Hawai'i Island, the endemic cricket,Caconemobius foriGurney & Rentz, 1978, is known as the first multicellular life form to colonise lava after an eruption from Kīlauea Volcano. In the Kona region, a congener,Caconemobius anahuluOtte, 1994 inhabits unvegetated lava flows from Hualālai Volcano, but little has been documented about its distribution.

    3. Our aim was to characterise the presence/absence ofCaconemobiusspp.across lava flows that are largely unvegetated, but differ in age since eruption and connectivity to older flows. We used baited live traps to survey 9 month–50 year‐old Kīlauea lava flows forC. fori, and ∼220 year‐old Hualālai lava flows forC. anahulu.

    4. We found no evidence thatC. forihas colonised the Kīlauea flows from the 2018 eruption. However, we did discover thatC. foriwas persistent and widespread on Kīlauea lava up to 50 years old within Hawai'i Volcanos National Park. We also capturedC. anahuluacross much of the Hualālai lava flows we surveyed in Kona.

    5. We demonstrated thatC. forido not always arrive on new lava within months after an eruption, in contrast to previous reports, and that bothC. foriandC. anahulucan remain on lava longer than previously appreciated. Vegetation successional state may be more important than true age for the persistence of these endemic crickets.

     
    more » « less
  4. Abstract

    About 14.5 months after the 2018 eruption and summit collapse of Kīlauea Volcano, Hawaiʻi, liquid water started accumulating in the deepened summit crater, forming a lake that attained 51 m depth before rapidly boiling off on December 20, 2020, when an eruption from the crater wall poured lava into the lake. Modeling the growth of the crater lake at Kīlauea summit is important for assessing the potential for explosive volcanism. Our current understanding of the past 2500 years of eruptive activity at Kīlauea suggests a slight dominance of explosive behavior over effusive. The deepened summit crater and presence of the crater lake in 2019 raised renewed concerns about explosive activity. Groundwater models using hydraulic‐property data from a nearby drillhole successfully forecast the timing and rate of lake filling. Here we compare the groundwater‐model predictions with observational data through the demise of the crater lake, examine the implications for local water‐table configuration, consider the potential role of evaporation and recharge (neglected in previous models), and briefly discuss the energetics of the rapid boil‐off. This post audit of groundwater‐flow models of Kīlauea summit shows that simple models can sometimes be used effectively to simulate complex settings such as volcanoes.

     
    more » « less
  5. Volcanic eruptions of rhyolitic magma often show shifts from powerful (Vulcanian to Plinian) explosive episodes to a more gentle effusion of viscous lava forming obsidian flows. Another prevailing characteris-tic of these eruptions is the presence of pyroclastic obsidians intermingled with the explosive tephra. This dense, juvenile product is similar to the tephra and obsidian flow in composition, but is generally less degassed than its flow counterpart. The formation mechanism(s) of pyroclastic obsidians and the information they can provide concerning the extent to which magma degassing modulates the eruptive style of rhyolitic eruptions are currently subject to active research. Porous tephra and pyroclastic and flow obsidians from the 1060CE Glass Mountain rhyolitic eruption at Medicine Lake Volcano (California) were analyzed for their porosity, φ, water content, H2O, and hydrogen isotopic composition, δD. H2O in porous pyroclasts is correlated negatively with δD and positively with φ, indicating that the samples were affected by post-eruptive rehydration. Numerical modeling suggests that this rehydration occurred at an average rate of 10−23.5±0.5m2s−1during the ∼960 years since the eruption, causing some pyroclasts to gain up to 1 wt%of meteoric water. Pyroclastic and flow obsidians were not affected by rehydration due to their very low porosity. Comparison between modeled δD-H2O relationships in degassing magma and values measured in the Glass Mountain samples supports the idea that rhyolitic magma degasses in closed-system until its porosity reaches a value of about 65±5%, beyond which degassing occurs in open-system until quench. During the explosive phase, rapidly ascending magma fragments soon after it becomes permeable, creating porous lapilli and ash that continue to degas in open-system within an expanding gas phase. As suggested by recent studies, some ash may aggregate and sinter on the conduit sides at different depths above the fragmentation level, partly equilibrating with the continuously fluxing heavier magmatic vapor, explaining the wide range of H2O contents and high variability in δD measured in the pyroclastic obsidians. Using only H2O and δD, it is impossible to rule out the possibility that pyroclastic obsidians may also form by permeable foam collapse, either syn-explosively near the conduit sides below the fragmentation level or during more effusive periods interspersed in the explosive phase. During the final effusive phase of the eruption, slowly ascending magma degasses in open-system until it reaches the surface, creating flows with low H2O and δD. This study shows that H2O measured in highly porous pyroclasts of a few hundred years or more cannot be used to infer syn-eruptive magma degassing pathways, unless careful assessment of post-eruptive rehydration is first carried out. If their mechanism of formation can be better understood, detailed analysis of the variations in texture and volatile content of pyroclastic obsidians throughout the explosive phase may help decipher the reasons why rhyolitic eruptions commonly shift from explosive to effusive phases. 
    more » « less