skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward User-Driven Sound Recognizer Personalization with People Who Are d/Deaf or Hard of Hearing
Automated sound recognition tools can be a useful complement to d/Deaf and hard of hearing (DHH) people's typical communication and environmental awareness strategies. Pre-trained sound recognition models, however, may not meet the diverse needs of individual DHH users. While approaches from human-centered machine learning can enable non-expert users to build their own automated systems, end-user ML solutions that augment human sensory abilities present a unique challenge for users who have sensory disabilities: how can a DHH user, who has difficulty hearing a sound themselves, effectively record samples to train an ML system to recognize that sound? To better understand how DHH users can drive personalization of their own assistive sound recognition tools, we conducted a three-part study with 14 DHH participants: (1) an initial interview and demo of a personalizable sound recognizer, (2) a week-long field study of in situ recording, and (3) a follow-up interview and ideation session. Our results highlight a positive subjective experience when recording and interpreting training data in situ, but we uncover several key pitfalls unique to DHH users---such as inhibited judgement of representative samples due to limited audiological experience. We share implications of these results for the design of recording interfaces and human-the-the-loop systems that can support DHH users to build sound recognizers for their personal needs.  more » « less
Award ID(s):
1763199
PAR ID:
10265875
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
2
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Systems that augment sensory abilities are increasingly employing AI and machine learning (ML) approaches, with applications ranging from object recognition and scene description tools for blind users to sound awareness tools for d/Deaf users. However, unlike many other AI-enabled technologies these systems provide information that is already available to non-disabled people. In this paper, we discuss unique AI fairness challenges that arise in this context, including accessibility issues with data and models, ethical implications in deciding what sensory information to convey to the user, and privacy concerns both for the primary user and for others. 
    more » « less
  2. Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids to treat their hearing loss at a fraction of traditional hearing care costs. These products incorporate self-fitting methods that allow end-users to configure their hearing aids without the help of an audiologist. A self-fitting method helps users configure the gain-frequency responses that control the amplification for each frequency band of the incoming sound. This paper considers how to guide the design of self-fitting methods by evaluating certain aspects of their design using computational tools before performing user studies. Most existing fitting methods provide various user interfaces to allow users to select a configuration from a predetermined set of presets. Accordingly, it is essential for the presets to meet the hearing needs of a large fraction of users who suffer from varying degrees of hearing loss and have unique hearing preferences. To this end, we propose a novel metric for evaluating the effectiveness of preset-based approaches by computing their population coverage. The population coverage estimates the fraction of users for which a self-fitting method can find a configuration they prefer. A unique aspect of our approach is a probabilistic model that captures how a user's unique preferences differ from other users with similar hearing loss. Next, we propose methods for building preset-based and slider-based self-fitting methods that maximize the population coverage. Simulation results demonstrate that the proposed algorithms can effectively select a small number of presets that provide higher population coverage than clustering-based approaches. Moreover, we may use our algorithms to configure the number of increments of slider-based methods. We expect that the computational tools presented in this article will help reduce the cost of developing new self-fitting methods by allowing researchers to evaluate population coverage before performing user studies. 
    more » « less
  3. Deaf and Hard-of-Hearing (DHH) users face accessibility challenges during in-person and remote meetings. While emerging use of applications incorporating automatic speech recognition (ASR) is promising, more user-interface and user-experience research is needed. While co-design methods could elucidate designs for such applications, COVID-19 has interrupted in-person research. This study describes a novel methodology for conducting online co-design workshops with 18 DHH and hearing participant pairs to investigate ASR-supported mobile and videoconferencing technologies along two design dimensions: Correcting errors in ASR output and implementing notification systems for influencing speaker behaviors. Our methodological findings include an analysis of communication modalities and strategies participants used, use of an online collaborative whiteboarding tool, and how participants reconciled differences in ideas. Finally, we present guidelines for researchers interested in online DHH co-design methodologies, enabling greater geographically diversity among study participants even beyond the current pandemic. 
    more » « less
  4. Abstract The auditory scaffolding hypothesis states that early experience with sound underpins the development of domain-general sequence processing abilities, supported by studies observing impaired sequence processing in deaf or hard-of-hearing (DHH) children. To test this hypothesis, we administered a sequence processing task to 77 DHH children who use American Sign Language (ASL) and 23 hearing monolingual children aged 7–12 years and found no performance difference between them after controlling for age and nonverbal intelligence. Additionally, neither spoken language comprehension scores nor hearing loss levels predicted sequence processing scores in the DHH group, whereas ASL comprehension scores did. Our results do not indicate sequence processing deficits in DHH children and do not support the auditory scaffolding hypothesis; instead, these findings suggest that factors related to experience with and/or proficiency in an accessible language during development may be more important determinants of sequence processing abilities. 
    more » « less
  5. Automatic Text Simplification (ATS), which replaces text with simpler equivalents, is rapidly improving. While some research has examined ATS reading-assistance tools, little has examined preferences of adults who are deaf or hard-of-hearing (DHH), and none empirically evaluated lexical simplification technology (replacement of individual words) with these users. Prior research has revealed that U.S. DHH adults have lower reading literacy on average than their hearing peers, with unique characteristics to their literacy profile. We investigate whether DHH adults perceive a benefit from lexical simplification applied automatically or when users are provided with greater autonomy, with on-demand control and visibility as to which words are replaced. Formative interviews guided the design of an experimental study, in which DHH participants read English texts in their original form and with lexical simplification applied automatically or on-demand. Participants indicated that they perceived a benefit form lexical simplification, and they preferred a system with on-demand simplification. 
    more » « less