skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adhesion of a tape loop
In this work, we revisit experimentally and theoretically the mechanics of a tape loop. Using primarily elastic materials (polydimethylsiloxane, PDMS, or polycarbonate, PC) and confocal microscopy, we monitor the shape as well as the applied forces during an entire cycle of compression and retraction of a half-loop compressed between parallel glass plates. We observe distinct differences in film shape during the cycle; points of equal applied force or equal plate separation differ in shape upon compression or retraction. To model the adhesion cycle in its entirety, we adapt the ‘Sticky Elastica’ of [T. J. W. Wagner et al., Soft Matter , 2013, 9 , 1025–1030] to the tape loop geometry, which allows a complete analytical description of both the force balance and the film shape. We show that under compression the system is generally not sensitive to interfacial interactions, whereas in the limit of large separation of the confining parallel plates during retraction the system is well described by the peel model. Ultimately, we apply this understanding to the measurement of the energy release rate of a wide range of different cross-linker ratio PDMS elastomer half-loops in contact with glass. Finally, we show how the model illuminates an incredibly simple adhesion measurement technique, which only requires a ruler to perform.  more » « less
Award ID(s):
2011681
PAR ID:
10265888
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
47
ISSN:
1744-683X
Page Range / eLocation ID:
10611 to 10619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasive water jet cutting. HGU assembly is accomplished using 3D printed truing clips and results in a rigid three-dimensional glass frame. Testing was done with the HGU oriented such that load was introduced on the short side edges of the two deck plates, resulting in an asymmetric load-support condition. A soft interface material was used between the HGU and steel plates of the hydraulic actuator and support for the purpose of avoiding premature cracking from local stress concentrations on the glass edges at the load and support locations. Force was applied in displacement control at 0.25 mm/minute with a full array of displacement and strain sensors. Test results for load vs. center deck plate transverse deflection are shown in Figure 2. All samples failed explosively by flexural buckling with no premature cracking on the load and support edges of the deck plates. Strain and deformation data clearly show the presence of second-order behavior resulting from bending deformation perpendicular to the plane of the deck plates. In general, linear axial behavior transitions to nonlinear second-order behavior, with increasing rates in deflection and strain growth, ultimately ending in glass fracture on the tension surfaces of the buckled deck plates. The failure resulted in near-complete disintegration of the deck plates, but with no observable cracking in any side plates and a secure connection on all adhesive tape. Results of the experimental program clearly demonstrate the feasibility of using HGUs for modular construction of compression dominant all-glass shell-type structures. This method of construction can significantly reduce the self-weight of the structure, and it will inspire the use of sustainable materials in the construction of efficient structures. 
    more » « less
  2. We studied the evolution of capillary bridges between nominally flat plates undergoing multiple cycles of compression and stretching in experiments and simulations. We varied the distance between the plates in small increments to study the full evolution of the bridge shape. Experiments show that contact angle hysteresis determines the shape of the bridge. In sliding drops, hysteresis can be modeled using a contact angle-dependent resistive force F̃R applied at the contact line. We developed a model that accurately captures the evolution of the bridge shape by combining F̃R and constrained energy minimization. Unlike previous work, this allows for both complete and partial contact line pinning. We also explored the effect of using nonparallel plates. The asymmetry in the bridge shape causes the movement of the center of mass of the bridge and can be explained by contact angle hysteresis. We find that even a slight misalignment between the flat plates can have a measurable effect. 
    more » « less
  3. The structural design of self-healing materials determines the ultimate performance of the product that can be used in a wide range of applications. Incorporating intrinsic self-healing moieties into puncture-resistant materials could significantly improve the failure resistance and product longevity, since their rapidly rebuilt bonds will provide additional recovery force to resist the external force. Herein, we present a series of tailored urea-modified poly(dimethylsiloxane)-based self-healing polymers (U-PDMS-SPs) that exhibit excellent puncture-resistant properties, fast autonomous self-healing, multi-cycle adhesion capabilities, and well-tunable mechanical properties. Controlling the composition of chemical and physical cross-links enables the U-PDMS-SPs to have an extensibility of 528% and a toughness of 0.6 MJ m −3 . U-PDMS-SPs exhibit fast autonomous self-healability with 25% strain recovery within 2 minutes of healing, and over 90% toughness recovery after 16 hours. We further demonstrate its puncture-resistant properties under the ASTM D5748 standard with an unbreakable feature. Furthermore, the multi-cycle adhesive properties of U-PDMS-SPs are also revealed. High puncture resistance (>327 mJ) and facile adhesion with rapid autonomous self-healability will have a broad impact on the design of adhesives, roofing materials, and many other functional materials with enhanced longevity. 
    more » « less
  4. While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low–surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion. 
    more » « less
  5. Mitigating the attachment of microorganisms to polymer biomaterials is critical for preventing hospital-acquired infections. Two chemical strategies to mitigate fouling include fabricating fouling-resistant surfaces, which typically present hydrophilic polymers, such as polyethylene glycol (PEG), or creating fouling-release surfaces, which are generally hydrophobic featuring polydimethylsiloxane (PDMS). Despite the demonstrated promise of employing PEG or PDMS, amphiphilic PEG/PDMS copolymer materials remain understudied. Here, for the first time, we investigated if phase-separated amphiphilic copolymers confounded microbial adhesion. We used bottlebrush amphiphilic PEG/PDMS co-networks and homopolymer networks to study bacterial adhesion across a library of gels (ϕPEG = 0.00, 0.21, 0.40, 0.55, 0.80, and 1.00). Hydrated atomic force microscopy measurements revealed that most of the gels had low surface roughness, less than 5 nm, and an elastic modulus of ∼80 kPa. Interestingly, the surface roughness and elastic modulus of the ϕPEG = 0.40 gel were twice as high as those of the other gels due to the presence of crystalline domains, as confirmed using polarized optical microscopy on the hydrated gel. The interactions of these six well-characterized gels with bacteria were determined using Escherichia coli K12 MG1655 and Staphylococcus aureus SH1000. The attachment of both microbes decreased by at least 60% on all polymer gels versus the glass controls. S. aureus adhesion peaked on the ϕPEG = 0.40, likely due to its increased elastic modulus, consistent with previous literature demonstrating that modulus impacts microbial adhesion. These findings suggest that hydrophilic, hydrophobic, and amphiphilic biomaterials effectively resist the early attachment of Gram-negative and Gram-positive microorganisms, providing guidance for the design of next-generation antifouling surfaces. 
    more » « less