skip to main content


Title: Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores
ABSTRACT In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans . To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination. IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans . Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus .  more » « less
Award ID(s):
1808717
NSF-PAR ID:
10267628
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Lin, Xiaorong
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
1
ISSN:
2161-2129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum , a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa , a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa , expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassa sub-1 , sub-1 -dependent gene NCU00309, and asl-1 —showed regulatory dynamics matching between C. globosum and N. crassa . Among 24 secondary metabolism gene clusters in C. globosum , 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum . Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatible versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum . This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species. IMPORTANCE Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways. 
    more » « less
  2. Polystyrene (PS) is one of the most used, yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or lim- ited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologi- cally active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engi- neered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic- derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived ben- zoic acid. 
    more » « less
  3. Fudal, Isabelle ; Di Pietro, Antonio (Ed.)
    ABSTRACT Differential growth conditions typically trigger global transcriptional responses in filamentous fungi. Such fungal responses to environmental cues involve epigenetic regulation, including chemical histone modifications. It has been proposed that conditionally expressed genes, such as those that encode secondary metabolites but also effectors in pathogenic species, are often associated with a specific histone modification, lysine27 methylation of H3 (H3K27me3). However, thus far, no analyses on the global H3K27me3 profiles have been reported under differential growth conditions in order to assess if H3K27me3 dynamics govern differential transcription. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing data from the plant-pathogenic fungus Verticillium dahliae grown in three in vitro cultivation media, we now show that a substantial number of the identified H3K27me3 domains globally display stable profiles among these growth conditions. However, we observe local quantitative differences in H3K27me3 ChIP-seq signals that are associated with a subset of differentially transcribed genes between media. Comparing the in vitro results to expression during plant infection suggests that in planta -induced genes may require chromatin remodeling to achieve expression. Overall, our results demonstrate that some loci display H3K27me3 dynamics associated with concomitant transcriptional variation, but many differentially expressed genes are associated with stable H3K27me3 domains. Thus, we conclude that while H3K27me3 is required for transcriptional repression, it does not appear that transcriptional activation requires the global erasure of H3K27me3. We propose that the H3K27me3 domains that do not undergo dynamic methylation may contribute to transcription through other mechanisms or may serve additional genomic regulatory functions. IMPORTANCE In many organisms, including filamentous fungi, epigenetic mechanisms that involve chemical and physical modifications of DNA without changing the genetic sequence have been implicated in transcriptional responses upon developmental or environmental cues. In fungi, facultative heterochromatin that can decondense to allow transcription in response to developmental changes or environmental stimuli is characterized by the trimethylation of lysine 27 on histone H3 (H3K27me3), and H3K27me3 has been implicated in transcriptional regulation, although the precise mechanisms and functions remain enigmatic. Based on ChIP and RNA sequencing data, we show for the soilborne broad-host-range vascular wilt plant-pathogenic fungus Verticillium dahliae that although some loci display H3K27me3 dynamics that can contribute to transcriptional variation, other loci do not show such a dependence. Thus, although we recognize that H3K27me3 is required for transcriptional repression, we also conclude that this mark is not a conditionally responsive global regulator of differential transcription upon responses to environmental cues. 
    more » « less
  4. Sil, Anita (Ed.)
    Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A . fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence–absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A . fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A . fumigatus , with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence–absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A . fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi. 
    more » « less
  5. de Vries, Ronald P. (Ed.)
    ABSTRACT Septation in filamentous fungi is a normal part of development, which involves the formation of cross-hyphal bulkheads, typically containing pores, allowing cytoplasmic streaming between compartments. Based on previous findings regarding septa and cell wall stress, we hypothesized that septa are critical for survival during cell wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient mutants (Δ sepH , Δ bud3 , Δ bud4 , and Δ rho4 ) and six antifungal compounds. Three of these compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors which activate the cell wall integrity signaling pathway (CWIS), while the three others (cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular processes not explicitly related to the cell wall. Our results show that deficiencies in septation lead to fungi which are more susceptible to cell wall-perturbing compounds but are no more susceptible to other antifungal compounds than a control. This implies that septa play a critical role in surviving cell wall stress. IMPORTANCE The ability to compartmentalize potentially lethal damage via septation appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress. However, it remains unknown whether this mechanism is deployed in response to all forms of stress or is limited to specific perturbations. Our results support the latter possibility by showing that presence of septa promotes survival in response to cell wall damage but plays no apparent role in coping with other unrelated forms of stress. Given that cell wall damage is a primary effect caused by exposure to the echinocandin class of antifungal agents, our results emphasize the important role that septa might play in enabling resistance to these drugs. Accordingly, the inhibition of septum formation could conceivably represent an attractive approach to potentiating the effects of echinocandins and mitigating resistance in human fungal pathogens. 
    more » « less