Polystyrene (PS) is one of the most used, yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or lim- ited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologi- cally active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engi- neered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic- derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived ben- zoic acid. 
                        more » 
                        « less   
                    
                            
                            Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores
                        
                    
    
            ABSTRACT In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans . To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination. IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans . Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1808717
- PAR ID:
- 10267628
- Editor(s):
- Lin, Xiaorong
- Date Published:
- Journal Name:
- mBio
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2161-2129
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a “winner-takes-all” phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.more » « less
- 
            ABSTRACT The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum , a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa , a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa , expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassa sub-1 , sub-1 -dependent gene NCU00309, and asl-1 —showed regulatory dynamics matching between C. globosum and N. crassa . Among 24 secondary metabolism gene clusters in C. globosum , 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum . Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatible versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum . This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species. IMPORTANCE Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways.more » « less
- 
            Mitchell, Aaron P. (Ed.)Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A . fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A . fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A . fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis -thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A . nidulans . However, the A . nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A . fumigatus and A . nidulans , two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A . fumigatus and A . nidulans . However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A . fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae , was also essential for virulence and GT biosynthesis in A . fumigatus , and for GT protection in A . fumigatus , A . nidulans , and A . oryzae . KojR regulates rglT , gliT , gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.more » « less
- 
            ABSTRACT This study explores how suppressing asexual development inAspergillus nidulansenhances the mechanical properties of mycelial materials. Using four aconidial mutants(ΔbrlA, ΔflbA, ΔfluG, andfadAG42R) that lack asexual development and a control strain (A28) that undergoes typical asexual development, we found that the absence of asexual development significantly improves mechanical strength. All mutants exhibited higher ultimate tensile strength (UTS) than the control, with ΔfluGand ΔbrlA(fluffy nonsporulating, FNS phenotype) showing the highest UTS. Additionally,fadAG42Rand ΔflbA(fluffy autolytic dominant, FAD phenotype) demonstrated significantly higher strain at failure (SF), linked to increased autolysis and lower dry cell mass compared to the control and FNS mutants. Solid-state NMR analysis revealed that autolysis in FAD mutants disrupts galactofuranose-related metabolic processes, altering cell wall composition and contributing to higher elasticity. These findings suggest that suppressing asexual development enhances mycelial material strength, while autolysis mechanisms influence elasticity. This research highlights the potential for genetic manipulation in fungi to engineer advanced mycelial-based materials with tailored mechanical properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    