skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: The impact of fungal developmental structures on mechanical properties of mycelial materials
ABSTRACT This study explores how suppressing asexual development inAspergillus nidulansenhances the mechanical properties of mycelial materials. Using four aconidial mutants(ΔbrlA, ΔflbA, ΔfluG, andfadAG42R) that lack asexual development and a control strain (A28) that undergoes typical asexual development, we found that the absence of asexual development significantly improves mechanical strength. All mutants exhibited higher ultimate tensile strength (UTS) than the control, with ΔfluGand ΔbrlA(fluffy nonsporulating, FNS phenotype) showing the highest UTS. Additionally,fadAG42Rand ΔflbA(fluffy autolytic dominant, FAD phenotype) demonstrated significantly higher strain at failure (SF), linked to increased autolysis and lower dry cell mass compared to the control and FNS mutants. Solid-state NMR analysis revealed that autolysis in FAD mutants disrupts galactofuranose-related metabolic processes, altering cell wall composition and contributing to higher elasticity. These findings suggest that suppressing asexual development enhances mycelial material strength, while autolysis mechanisms influence elasticity. This research highlights the potential for genetic manipulation in fungi to engineer advanced mycelial-based materials with tailored mechanical properties.  more » « less
Award ID(s):
2006189
PAR ID:
10597858
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates the chemical inhibition of asexual development in Aspergillus nidulans to enhance the mechanical properties of mycelial materials. We hypothesized that suppressing conidiation using the ornithine decarboxylase inhibitor α-difluoromethylornithine (DFMO) would increase material strength by inhibiting asexual development, promoting denser hyphal packing. Mycelial materials were grown in DFMO concentrations (0, 0.05, 0.5, and 5 mM), and conidiation and ultimate tensile strength (UTS) were measured. Results showed a dose-dependent reduction in conidiation, with significant decreases at all DFMO levels (P ≤ 0.05). While lower DFMO concentrations (0.05 and 0.5 mM) did not significantly alter UTS, 5 mM DFMO treatment doubled the material’s tensile strength compared to controls (P ≤ 0.05). Scanning electron microscopy confirmed reduced developmental structures in DFMO-treated samples, supporting the hypothesis. The non-linear relationship between conidiation suppression and strength improvement suggests additional mechanisms, such as hyphal morphology or cell wall changes, may contribute. These findings demonstrate that chemical modulation of fungal development can rationally tune mycelial material properties, offering a systematic approach for biomaterial engineering. 
    more » « less
  2. Abstract Under synchronized conidiation, over 2500 gene products show differential expression, including transcripts for bothbrlAandabaA, which increase steadily over time. In contrast, during wall-stress induced by the echinocandin micafungin, thebrlAtranscript is upregulated while theabaAtranscript is not. In addition, whenmpkA(last protein kinase in the cell wall integrity signaling pathway) is deleted,brlAexpression is not upregulated in response to wall stress. Together, these data imply BrlA may play a role in a cellular stress-response which is independent of the canonical BrlA-mediated conidiation pathway. To test this hypothesis, we performed a genome-wide search and found 332 genes with a putative BrlA response element (BRE) in their promoter region. From this set, we identified 28 genes which were differentially expressed in response to wall-stress, but not during synchronized conidiation. This set included seven gene products whose homologues are involved in transmembrane transport and 14 likely to be involved in secondary metabolite biosynthesis. We selected six of these genes for further examination and find that they all show altered expression behavior in thebrlAdeletion strain. Together, these data support the idea that BrlA plays a role in various biological processes outside asexual development. ImportanceTheAspergillus nidulanstranscription factor BrlA is widely accepted as a master regulator of conidiation. Here, we show that in addition to this function BrlA appears to play a role in responding to cell-wall stress. We note that this has not been observed outsideA. nidulans. Further, BrlA-mediated conidiation is highly conserved acrossAspergillusspecies, so this new functionality is likely relevant in otherAspergilli. We identified several transmembrane transporters that have altered transcriptional responses to cell-wall stress in abrlAdeletion mutant. Based on our observation, together with what is known about thebrlAgene locus’ regulation, we identifybrlAβas the likely intermediary in function ofbrlAin the response to cell-wall stress. 
    more » « less
  3. The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the ‘sterile’ white state and the mating-competent opaque state inCandida albicans,a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuinSIR2inC. albicansphenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314.SIR2mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss ofSIR2in other SC5314-derived backgrounds, including newly constructed BWP17sir2Δ/Δ mutants, failed to recapitulate the increased white–opaque switching frequencies observed in the original BWP17sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact withSIR2to increase phenotypic switching in this BWP17sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derivedsir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes. 
    more » « less
  4. Abstract Additive manufacturing (AM) is now widely used for research and industrial production. The benchmark data for mechanical properties of additively manufactured specimens is very useful for many communities. This data article presents a tensile testing dataset of ASTM D638 size specimens without and with embedded internal geometrical features printed using polylactic acid (PLA) in a Fused Filament Fabrication (FFF) additive manufacturing process. The added features can mimic defects of various shapes and sizes. This work is a supplement to the published research articleAssisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography(Additive Manufacturing, 2023, 103483). The printed specimens were tensile tested. Stress-strain graphs were developed and used to calculate the mechanical properties such as ultimate tensile strength (UTS) and strain at UTS. The mechanical properties, the correlations between mechanical properties and size, shape and location of geometrical features (defects), and the trends in mechanical properties can be useful in benchmarking the results of other researchers. 
    more » « less
  5. Abstract Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogenPseudomonas aeruginosacombined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnessesviaperceiving varied mechanical stress and strain upon surface engagement. 
    more » « less