skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Age-Dependent Decline in Salinity Tolerance in a Euryhaline Fish
Euryhaline teleost fish are characterized by their ability to tolerate a wide range of environmental salinities by modifying the function of osmoregulatory cells and tissues. In this study, we experimentally addressed the age-related decline in the sensitivity of osmoregulatory transcripts associated with a transfer from fresh water (FW) to seawater (SW) in the euryhaline teleost, Mozambique tilapia, Oreochromis mossambicus . The survival rates of tilapia transferred from FW to SW were inversely related with age, indicating that older fish require a longer acclimation period during a salinity challenge. The relative expression of Na + /K + /2Cl − cotransporter 1a ( nkcc1a ), which plays an important role in hyposmoregulation, was significantly upregulated in younger fish after SW transfer, indicating a clear effect of age in the sensitivity of branchial ionocytes. Prolactin (Prl), a hyperosmoregulatory hormone in O. mossambicus , is released in direct response to a fall in extracellular osmolality. Prl cells of 4-month-old tilapia were sensitive to hyposmotic stimuli, while those of >24-month-old fish did not respond. Moreover, the responsiveness of branchial ionocytes to Prl was more robust in younger fish. Taken together, multiple aspects of osmotic homeostasis, from osmoreception to hormonal and environmental control of osmoregulation, declined in older fish. This decline appears to undermine the ability of older fish to survive transfer to hyperosmotic environments.  more » « less
Award ID(s):
1755016
PAR ID:
10267640
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Aging
Volume:
2
ISSN:
2673-6217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In euryhaline fish, prolactin (Prl) plays an essential role in freshwater (FW) acclimation. In the euryhaline and eurythermal Mozambique tilapia,Oreochromis mossambicus,Prl cells are model osmoreceptors, recently described to be thermosensitive. To investigate the effects of temperature on osmoreception, we incubated Prl cells of tilapia acclimated to either FW or seawater (SW) in different combinations of temperatures (20, 26 and 32 °C) and osmolalities (280, 330 and 420 mOsm/kg) for 6 h. Release of both Prl isoforms, Prl188and Prl177, increased in hyposmotic media and were further augmented with a rise in temperature. Hyposmotically-induced release of Prl188, but not Prl177, was suppressed at 20 °C. In SW fish, mRNA expression ofprl188increased with rising temperatures at lower osmolalities, while andprl177decreased at 32 °C and higher osmolalities. In Prl cells of SW-acclimated tilapia incubated in hyperosmotic media, the expressions of Prl receptors,prlr1 and prlr2,and the stretch-activated Ca2+channel,trpv4,decreased at 32 °C, suggesting the presence of a cellular mechanism to compensate for elevated Prl release. Transcription factors,pou1f1,pou2f1b,creb3l1,cebpb,stat3,stat1aandnfat1c, known to regulateprl188andprl177,were also downregulated at 32 °C. Our findings provide evidence that osmoreception is modulated by temperature, and that both thermal and osmotic responses vary with acclimation salinity. 
    more » « less
  2. Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia ( Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO induced activation of the MIB pathway. 
    more » « less
  3. Prolactin (PRL) cells within the rostral pars distalis (RPD) of euryhaline and eurythermal Mozambique tilapia, Oreochromis mossambicus, rapidly respond to a hyposmotic stimulus by releasing two distinct PRL isoforms, PRL 188 and PRL 177 . Here, we describe how environmentally relevant temperature changes affected mRNA levels of prl 188 and prl 177 and the release of immunoreactive prolactins from RPDs and dispersed PRL cells. When applied under isosmotic conditions (330 mosmol/kgH 2 O), a 6°C rise in temperature stimulated the release of PRL 188 and PRL 177 from both RPDs and dispersed PRL cells under perifusion. When exposed to this same change in temperature, ∼50% of dispersed PRL cells gradually increased in volume by ∼8%, a response partially inhibited by the water channel blocker, mercuric chloride. Following their response to increased temperature, PRL cells remained responsive to a hyposmotic stimulus (280 mosmol/kgH 2 O). The mRNA expression of transient potential vanilloid 4, a Ca 2+ -channel involved in hyposmotically induced PRL release, was elevated in response to a rise in temperature in dispersed PRL cells and RPDs at 6 and 24 h, respectively; prl 188 and prl 177 mRNAs were unaffected. Our findings indicate that thermosensitive PRL release is mediated, at least partially, through a cell-volume-dependent pathway similar to how osmoreceptive PRL release is achieved. 
    more » « less
  4. Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 503 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. Three salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in an additional two histone PTMs in the testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity reached a maximum of 82.5 g/kg, the relative abundance of H3K14ac and H3K18ub decreased significantly in the testes. This study demonstrates that specific types of salinity stress can alter histone PTMs in Mozambique tilapia, both in an osmoregulatory organ and in the germ line. These results signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes, thereby adding to a growing body of evidence that epigenetic mechanisms are involved in such processes. 
    more » « less
  5. null (Ed.)
    Abstract Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e., Class Osteichthyes) are a particularly useful model for studies of senescence because they can readily be aged and exhibit some of the longest lifespans among vertebrates. In this study we examined the potential relationship between age and multiple physiological systems including: stress levels, immune function, and telomere length in individuals ranging in age from 2 to 99 years old in bigmouth buffalo ( Ictiobus cyprinellus ), the oldest known freshwater teleost fish. Contrary to expectation, we did not find any evidence for age-related declines in these physiological systems. Instead, older fish appeared to be less stressed and had greater immunity than younger fish, suggesting age-related improvements rather than declines in these systems. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres. Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century. 
    more » « less