This work focuses on active galactic nuclei (AGNs) and on the relation between the sizes of the hot dust continuum and the broad-line region (BLR). We find that the continuum size measured using optical/near-infrared interferometry (OI) is roughly twice that measured by reverberation mapping (RM). Both OI and RM continuum sizes show a tight relation with the H β BLR size, with only an intrinsic scatter of 0.25 dex. The masses of supermassive black holes (BHs) can hence simply be derived from a dust size in combination with a broad line width and virial factor. Since the primary uncertainty of these BH masses comes from the virial factor, the accuracy of the continuum-based BH masses is close to those based on the RM measurement of the broad emission line. Moreover, the necessary continuum measurements can be obtained on a much shorter timescale than those required monitoring for RM, and they are also more time efficient than those needed to resolve the BLR with OI. The primary goal of this work is to demonstrate a measuring of the BH mass based on the dust-continuum size with our first calibration of the R BLR – R d relation. The current limitation and caveats are discussed in detail. Future GRAVITY observations are expected to improve the continuum-based method and have the potential of measuring BH masses for a large sample of AGNs in the low-redshift Universe.
more »
« less
The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region
By using the GRAVITY instrument with the near-infrared (NIR) Very Large Telescope Interferometer (VLTI), the structure of the broad (emission-)line region (BLR) in active galactic nuclei (AGNs) can be spatially resolved, allowing the central black hole (BH) mass to be determined. This work reports new NIR VLTI/GRAVITY interferometric spectra for four type 1 AGNs (Mrk 509, PDS 456, Mrk 1239, and IC 4329A) with resolved broad-line emission. Dynamical modelling of interferometric data constrains the BLR radius and central BH mass measurements for our targets and reveals outflow-dominated BLRs for Mrk 509 and PDS 456. We present an updated radius-luminosity (R-L) relation independent of that derived with reverberation mapping (RM) measurements using all the GRAVITY-observed AGNs. We find our R-L relation to be largely consistent with that derived from RM measurements except at high luminosity, where BLR radii seem to be smaller than predicted. This is consistent with RM-based claims that high Eddington ratio AGNs show consistently smaller BLR sizes. The BH masses of our targets are also consistent with the standardMBH-σ*relation. Model-independent photocentre fitting shows spatial offsets between the hot dust continuum and the BLR photocentres (ranging from ∼17 μas to 140 μas) that are generally perpendicular to the alignment of the red- and blueshifted BLR photocentres. These offsets are found to be related to the AGN luminosity and could be caused by asymmetricK-band emission of the hot dust, shifting the dust photocentre. We discuss various possible scenarios that can explain this phenomenon.
more »
« less
- Award ID(s):
- 1909711
- PAR ID:
- 10611458
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 684
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present new Very Large Telescope Interferometer (VLTI)/GRAVITY near-infrared interferometric measurements of the angular size of the innermost hot dust continuum for 14 type 1 active galactic nuclei (AGNs). The angular sizes are resolved on scales of ∼0.7 mas and the inferred ring radii range from 0.028 to 1.33 pc, comparable to those reported previously and a factor of 10−20 smaller than the mid-infrared sizes in the literature. Combining our new data with previously published values, we compiled a sample of 25 AGNs with bolometric luminosity ranging from 1042to 1047erg s−1, with which we studied the radius-luminosity (R − L) relation for the hot dust structure. Our interferometric measurements of radius are offset by a factor of 2 from the equivalent relation derived through reverberation mapping. Using a simple model to explore the dust structure’s geometry, we conclude that this offset can be explained if the 2 μm emitting surface has a concave shape. Our data show that the slope of the relation is in line with the canonicalR ∝ L0.5when using an appropriately non-linear correction for bolometric luminosity. In contrast, using optical luminosity or applying a constant bolometric correction to it results in a significant deviation in the slope, suggesting a potential luminosity dependence on the spectral energy distribution. Over four orders of magnitude in luminosity, the intrinsic scatter around theR − Lrelation is 0.2 dex, suggesting a tight correlation between the innermost hot dust structure size and the AGN luminosity.more » « less
-
null (Ed.)We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br γ emission line in the nucleus of the active galaxy IRAS 09149−6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120 μ as (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 μ m continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br γ line. We infer the radius of the BLR to be ∼65 μ as (0.075 pc), which is consistent with the radius–luminosity relation of nearby active galactic nuclei derived based on the time lag of the H β line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 10 8 M ⊙ , which is a little below, but consistent with, the standard M BH – σ * relation.more » « less
-
The broad-line region (BLR) of active galactic nuclei (AGNs) traces gas close to the central supermassive black hole (BH). Recent reverberation mapping (RM) and interferometric spectro-astrometry data have enabled detailed investigations of the BLR structure and dynamics as well as estimates of the BH mass. These exciting developments have motivated comparative investigations of BLR structures using different broad emission lines. In this work, we have developed a method to simultaneously model multiple broad lines of the BLR from a single-epoch spectrum. We applied this method to the five strongest broad emission lines (Hα, Hβ, Hγ, Paβ, and He Iλ5876) in the UV-to-near-IR spectrum of NGC 3783, a nearby Type I AGN that has been well studied by RM and interferometric observations. Fixing the BH mass to the published value, we fit these line profiles simultaneously to constrain the BLR structure. We find that the differences between line profiles can be explained almost entirely as being due to different radial distributions of the line emission. We find that using multiple lines in this way also enables one to measure some important physical parameters, such as the inclination angle and virial factor of the BLR. The ratios of the derived BLR time lags are consistent with the expectation of theoretical model calculations and RM measurements.more » « less
-
Abstract The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the HβBLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the HαBLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hαlags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the HαBLR against the broad Hαand 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβsize–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hαluminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hαbroad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M⊙.more » « less
An official website of the United States government

